Home | My Profile | Contact Us
Research Trends Products  |   order gateway  |   author gateway  |   editor gateway  
Register | Forgot Password

Author Resources
 Author Gateway
 Article submission guidelines

Editor Resources
 Editor/Referee Gateway

 Regional Subscription Agents/Distributors
Trends in Entomology   Volumes    Volume 16 
Biofabrication with insect cells
Natalie R. Rubio, Naya E. McCartney, Barry A. Trimmer, David L. Kaplan
Pages: 1 - 17
Number of pages: 17
Trends in Entomology
Volume 16 

Copyright © 2020 Research Trends. All rights reserved

Insect cells may be preferred over mammalian cells for biofabrication because of several bioprocess benefits including tolerance to fluctuations in the external environment, low secretion of and sensitivity to toxic by-products and ease of genetic modification. Insect muscle cells, in particular, are functionally promising in vitro but have yet to find a purpose outside of basic research. Insect muscle cell development and physiology are well-documented and myogenic cell populations from a variety of species and tissue types have been propagated in vitro. Muscle cells can be easily isolated from insect embryos or metamorphosing stages, separated from contaminating cell types and triggered to differentiate via administration of insect-specific hormones. The abilities of insect cells to grow under ambient conditions, survive and function (i.e., contract) for extended periods of time without fresh nutrients and to exhibit powerful contractions present an attractive alternative to mammalian cell culture in the context of advanced manufacturing processes. Moreover, insect cells are less costly to produce at large-scale, lowering barriers to commercialization. Bioactuation devices, cultured meat and ingestible vaccines have been identified as promising areas of application for insect cell cultivation, with others likely to emerge. Some of the next steps to advance insect cell-based technologies include the design of control systems to regulate in vitro contractions, adaptation of tissue engineering techniques for invertebrate cells, scaling insect cell and tissue formation to meet the needs of these broader applications, and evaluation of food nutrition and safety.
View Full Article  


Buy this article
Buy this volume
Subscribe to this title
Shopping Cart

Quick Links
Search Products
Browse in Alphabetical Order : Journals
Browse by Subject Classification : Journals

Ordering Information Ordering Information
Downloadable forms Downloadable Forms