
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discovery and disposition of the 1,4-diradical intermediate 
during reactions of isocyanates with alkenes 
 

ABSTRACT 
Isocyanates react by a concerted mechanism for 
[2+2] cycloaddition reactions when the alkene is 
electron-deficient. Alkenes that are sufficiently 
electron-rich release a pi electron to the isocyanate
which leads to a 1,4-diradical intermediate via the 
single electron transfer (SET) pathway. The triplet 
1,4-diradical intermediate is in equilibrium with 
the singlet form. At temperatures around 15 oC and
above the 1,4-diradical is in the triplet state; but it 
rearranges to the singlet form below 15 oC. The 
1,4-diradical intermediate can close to give beta-
lactam products, or it can be intercepted with a 
second isocyanate to give uracil products. 
 
KEYWORDS: triplet 1,4-diradical, singlet 1,4-
diradical, NMR line broadening, isocyanates, [2+2]
cycloaddition with alkenes, trapping the 1,4-
diradical.  
 
INTRODUCTION   
Chlorosulfonyl isocyanate (CSI) is the most 
reactive isocyanate [1]. CSI reaction with alkenes 
provide [2+2] sulfonyl adducts that are readily 
reduced to β-lactams (Eq. 1) [2, 3]. Graf proposed 
a 1,4-dipolar intermediate for this reaction, and 
for many years a dipolar specie supported the 
performance of CSI with alkenes (Figure 1) [4].
Subsequent authors presented calculations for an 
orthogonal [5], and later an in-plane parallel [6]
transition state for the concerted pathway. The
 

dipolar intermediate for reaction of CSI with electron-
rich alkenes was accepted in the literature until the 
use of a radical trap reagent to inhibit the reaction 
progress [7].  
 
The 1,4-diradical intermediate  
Kinetic studies with CSI and alkenes show a linear
correlation for a plot of ln k vs. calculated vertical 
ionization potential (IP) of the alkenes that have 
IP values > 8.8 eV [7]. Alkenes with IP values 
less than 8.8 eV gave kinetic data off the line 
indicating a change from the concerted pathway. 
Reaction of CSI with alkenes having IP values < 
8.8 eV were inhibited in the presence of TEMPO, 
a radical inhibitor [7]. The single electron transfer 
(SET) pathway for reaction with electron-rich 
alkenes to give 1,4-diradical intermediates is 
described in Scheme 1. The pre-equilibrium complex
is indicated in Scheme 1 since reactions are more 
efficient at lower temperatures where the reagents 
formed a complex and react via a unimolecular 
second order rather than a bimolecular second 
order process [8]. For example, CSI reacts with 
styrene in methylene chloride at room temperature 
in 25 minutes, but at 10-15 oC the reaction gets 
completed in 10 minutes with a higher yield [8] 
(See Supporting Information in reference 8 for 
more examples). 
To further confirm a di-radical intermediate we 
attempted an electron paramagnetic resonance 
(EPR) study at another institution which was 
unsuccessful. This was discouraging in light of 
the successful radical trapping experiments [7].
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NMR studies, described below, show the EPR 
experiment was unsuccessful because it was 
carried out at -78 oC. 
During an NMR study of CSI with electron-rich 
alkenes we noticed line-broadening that disappeared
after the reaction was complete. We expanded the 
singlet internal standard of TMS or 
fluorotrichloromethane from - 0.08 to + 0.08 ppm, 
and then recorded the peak width at half-height of 
the reference singlet. For example, the internal 
standard for a solution of 4-methylstyrene before 
addition of CSI has a peak width at half-height of 
2.7 Hz. Three minutes after addition of CSI the 
standard singlet has a peak width at half-height of 
4.9 Hz which returns to 2.7 Hz after the reaction 
is complete [9]. A careful line-broadening study 
of fifteen electron-rich alkenes confirmed the 
presence of 1,4-diradical intermediates for 
reaction of CSI with electron-rich alkenes [9]. 
Two radicals in a single molecule that do not 
interact with each other are referred to as bi-
radicals [10]. When two radicals are in the same 
molecule and do interact, they are referred to as 
di-radicals. Hund’s rule may not apply if the 
interaction between the electrons in a di-radical is 
small, and thus the singlet state can exist [10]. We 
found that line-broadening disappeared when the 
temperature was lowered, but the lowering was 
not enough to stop the reaction progress. For 
example, methylenecyclohexane reacts with CSI to
give line-broadening at + 15 oC, but not at 0 oC [9].
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The 1,4 di-radical from methylenecyclohexane at + 
15 oC or higher temperature has both electrons
unpaired and it is in the triplet state. At 0 oC the 
equilibrium for the 1,4-diradical favors the paired 
singlet state and line-broadening disappears (Eq. 2)
[9]. The diradical intermediate can be shifted from 
the triplet to singlet and back to the triplet 
multiple times during the reaction. 
 
 
 
 
 
 

 
 
 

 
Trapping the 1,4-diradical with a second CSI  
The life-time for 1,4-diradical intermediates 
should be longer than that of a 1,4-dipolar species. 
Thus, trapping a 1,4-diradical should be easier
than trapping a dipolar intermediate. In solution, 
very reactive alkenes like o-dialkylaminostyrenes
[2] and 7-methylenenorbornadiene [11] give 2:1 
uracil adducts (Eqs. 3 & 4). Neat inverse addition, 
that is adding neat alkene to neat excess CSI, 
gives uracil products from a second molecule of 
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Figure 1. Proposed 1,4-dipolar intermediate. 
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CSI at room temperature gives predominately 
a 2:1 product suggesting a di-radical component 
for this unreactive alkene under these conditions
(Eq. 5) [12]. We have not maximized the 
reaction conditions to obtain the 2:1 product 
exclusively with this or other electron-deficient 
alkenes. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CSI trapping the 1,4-diradical intermediate [12]. 
For example, 2-fluorodec-1-ene is an electron-
deficient alkene and it reacts slowly with CSI in 
nitromethane at 50 oC. It does not show line-
broadening in solution at this elevated temperature
indicating a concerted process [9]. However, 
inverse addition of neat 2-fluorodec-1-ene to neat
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Scheme 1. Single electron pathway to give 1,4-diradical intermediates. 
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the alkene to be more electron-rich to deliver the 
alkene electron to the isocyanate. When the 1,4-
diradical intermediate is formed, it can be trapped 
by a second isocyanate. A concerted pathway, at a 
higher temperature, is required for less reactive 
alkenes when the isocyanate is unable to transfer 
an electron from the alkene.  
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Other isocyanates  
p-toluenesulfonyl isocyanate reacts with electron-
rich alkenes like methylenecyclohexane, 2-
methyl-2-butene, and various reactive styrene’s to 
give tosyl-β-lactams [13]. Product yields are 
moderate in solution but the reaction time is 
decreased and the product yields improved with 
inverse addition and without solvent. Line-
broadening for reaction of p-toluenesulfonyl 
isocyanate with 3,4-dihydro-2H-pyran in CDCl3
was observed and shows that other isocyanates 
can also react via the SET pathway if the alkene is 
sufficiently electron-rich to release its electron to 
the isocyanate (Scheme 2) [13]. Less reactive 
alkenes are forced to react with p-toluenesulfonyl 
isocyanate by a concerted path, but the higher 
temperatures required can decompose the delicate 
β-lactam products.  
 
CONCLUSION 
Isocyanates react with alkenes by way of a single 
electron transfer process if the alkene is electron-
rich enough to allow transfer of a single electron 
to a particular isocyanate. CSI is the most reactive 
isocyanate, and it will transfer the electron from 
most alkenes to the isocyanate. Less reactive 
isocyanates, like p-toluenesulfonyl isocyanate, require
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