
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deconvolving the absorbance of methyl and methylene groups 
in the FT-IR 3000-2800 cm-1 band of petroleum fractions 
 

ABSTRACT 
A new algorithm is proposed to deconvolve the 
infrared spectrum of complex hydrocarbon mixtures 
in the 3000-2800 cm-1 region. The algorithm enables 
the accurate estimation of the contribution of 
methyl and methylene groups in petroleum samples, 
which is highly characteristic for their composition. 
The algorithm is developed based on the analysis 
of FT-IR spectra of seventy oil fractions, practically 
covering the whole range of a petroleum refinery 
intermediate and final products. The experimentally 
derived spectra are deconvolved by fitting  
three Lorentzian and one asymmetric Gaussian 
distributions, corresponding to methyl and 
methylene asymmetric and symmetric stretching 
vibrations. Molar absorptivities for these peaks 
are estimated from the FT-IR spectra of pure  
n-alkanes and alkyl-aromatics. The curve fitting 
procedure is implemented in Sequential Quadratic 
Programming (SQP) utilizing linear and non-linear 
constraints to incorporate chemical information, 
including the absorbance band positions and  
their molar absorptivity values. The developed 
methodology manages to reconstruct efficiently 
the FT-IR spectra of petroleum fractions, as 
indicated by the Mean Square Error (MSE) metric. 
The correctness of the selected peaks (position, 
amplitude) is further demonstrated by the practically 
constant ratios of the peak areas obtained for  
the asymmetric and symmetric methyl and 
methylene absorption bands, respectively of the 
 

whole data set. The algorithm facilitates the spectra 
modeling and the accurate estimation of the fitted 
methyl and methylene peak areas, which can  
be used for calculating specific compositional 
parameters of oil samples instead of the usually 
employed peak heights. Such modeling is extremely 
important for heavy petroleum fractions, where 
detailed compositional information is difficult to 
be obtained. 
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1. INTRODUCTION 
Detailed compositional data of petroleum fractions 
is appropriate in multiple tasks like identification, 
characterization and process optimization. Due to 
the inherent compositional complexity of petroleum, 
even when dealing with light or middle fractions, 
an exhaustive description of all compounds 
present is not possible due to analytical and/or 
economical limitations. Therefore, bulk compositional 
characteristics expressed as structural parameters, 
are often employed. Especially, in the case of heavy 
oil fractions or compound groups like resins and 
asphaltenes, this approach is practically the only 
available characterization scheme today. 
Infrared (IR) spectroscopy certainly constitutes one 
of the most widely employed methods in petroleum 
analysis due to its ability to handle nearly any 
sample in any physical state, providing valuable 
information about its molecular structure in a rapid
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Peak heights corresponding to these bands have 
been used to calculate empirical compositional 
parameters related to the paraffinic character of 
samples [5]. Coelho et al. [6] showed through the 
analysis of alkyl-benzenes that the 2927/2957 cm-1 
absorbance height ratio is linearly related to the  
relative concentration of methylene to methyl 
groups in asphaltenes fractions and may be used 
to calculate the length of the terminal aliphatic 
chains. In the same work, a detailed survey on  
IR applications in structural characterization of 
petroleum is provided. In other works [7, 8], 
methyl/methylene height ratios are demonstrated 
to correlate well with geochemical parameters of 
kerogen, asphaltenes and bitumens. 
The heights of absorbance peaks in the 3000- 
2800 cm-1 region of petroleum spectra are commonly 
used as qualitative parameters, since the existing 
strong overlap of methyl/methylene absorptions 
prevents the accurate quantitative estimation of 
the corresponding areas. Although the height of a 
peak depends on the concentration and the molar 
absorptivity of the specific group, peak broadening 
and displacement are often experienced, contributing 
to significant inaccuracies. Distortions in both peak 
shape and maximum position of specific groups in 
a mixture spectrum are caused by the surrounding 
molecules. Complex distributions combining 
characteristics of both Gaussian and Lorenzian 
functions are usually employed to simulate 
absorption bands in liquid mixtures like petroleum 
and its fractions. Peak area constitutes a 
representative quantitative indicator, because the 
final peak profile is the sum of all the individual 
elements contributing to the absorption. As a 
result, if correctly calculated, the peak areas remain 
constant independently of possible shape distortions. 
The deconvolution of overlapping peaks in IR 
spectra is usually carried out using Fourier Self-
Deconvolution (FSD), Partial Least squares (PLS) 
and the classical curve-fitting methods [9]. The 
goal of the latter is to mathematically create 
individual distributions under the experimental 
signal, the sum of which should match as precisely 
as possible with the original experimental spectrum. 
A least-square minimization of error between the 
experimental and the reconstructed spectra is 
often employed. In most commercially available 
deconvolution software packages, the selection  
of the appropriate number of distributions to be

and inexpensive manner. An additional advantage 
of this technique is its ability to reflect sample 
composition without influencing its “internal 
equilibrium”, a feature usually unavoidable when 
dynamic methods, like chromatography, are utilized. 
The latter is of great importance in the analysis of 
heavy petroleum fractions that contain a vast 
quantity of compounds in a more or less unknown 
physicochemical equilibrium status. 
The infrared spectrum of a molecule, being its 
unique characteristic signature, can be used as a 
sensitive fingerprint for identification purposes by 
comparison to a reference spectrum. IR spectroscopy 
is employed for light petroleum fractions for 
fingerprinting and identification purposes, even if 
the presence of a large number of individual 
components leads to a complex spectrum with a 
strong overlap between different absorption 
bands, which obstructs the identification of any 
single compound. Nevertheless, the spectrum 
remains a unique characteristic of the specific oil 
sample and can be used effectively to define 
differences or similarities with other fractions. For 
middle and heavy cuts, IR spectrum is fundamental 
for understanding functional properties, since a more 
detailed compositional characterization is usually 
not available.  
C-H vibrations of methyl, methylene and methyne 
groups are dominant for molecules containing 
aliphatic fragments, as most of the petroleum 
constituents do. The presence of carbon atoms in 
different structural units, (methyl terminated 
aliphatic chains, bridges between aromatic units, 
methylene chains, naphthenic units) may be 
approximated using 13C NMR techniques as it has 
been reported in many studies [1, 2]. Nevertheless, 
NMR analysis is still far from being a routine 
experimental technique in petroleum laboratories. 
Therefore, the use of alternative available analytical 
methods enabling structural characterization of 
the samples, such as IR spectroscopy is of great 
importance [3, 4]. 
In the 3000-2800 cm-1 region of the IR spectrum, 
asymmetric and symmetric methyl and methylene 
group vibrations give rise to absorption bands  
in the 2970-2950, 2880-2860 2935-2915, 2865-
2845 cm-1 ranges, respectively. Their relative 
abundance reflects characteristic structural features 
of petroleum samples (e.g. alkyl chains length).
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napthas to solid asphaltic residues. Given that no 
other constraints (e.g. forced convergence limitations, 
amplitude and variance range of the calculated 
distributions) were applied to the algorithm, the 
obtained quality of fit and the stability of the peak 
maxima positions indicate the effectiveness of  
the proposed methodology. The fact that the 
deconvolution was applied to samples with 
significant compositional differences and, therefore, 
significantly different spectral patterns, ensures 
the robustness of the algorithm and its applicability 
to a wide range of petroleum hydrocarbon mixtures. 
The use of our methodology facilitates the reliable 
determination of methyl and methylene peak areas 
to be used instead of peak heights, thus leading to 
more accurate compositional calculations. 
  
2. MATHEMATICAL ALGORITHM 
A characteristic of a large class of constrained-
optimization methods is the transformation of the 
constrained criterion into a basic unconstrained 
problem penalizing solutions that are near or 
beyond the constraint boundary. In this way, the 
constrained problem is solved using a sequence of 
parameterized unconstrained optimization stages, 
which at the limit (of the sequence) converge to 
the constrained problem. More recent and efficient 
methods are focusing on the solution of the 
Karush-Kuhn-Tucker (KKT) equations as necessary 
optimality conditions for a constrained-optimization 
problem. The Sequential (or Successive) Quadratic 
Programming (SQP) algorithm has been established 
as one of the most successful methods for solving 
non-linear constrained optimization problems.  
It constitutes a powerful tool for minimizing 
functions of several parameters subject to well 
defined equality and/or inequality constraints. A 
nonlinear programming problem is described as 

minimize   ( )

subject to   ( ) 0     , 1,...,
                 ( ) 0    ,  1,...,

x
x

x
x

i

j

f

h i m
g j n

= =
≤ =                          (1) 

where f(x) is the objective function to be optimized, 
x is the parameters vector, h(x) is the equality 
constraint function and g(x) the inequality one. 
Inequality constraints of the form g’(x) ≥ 0 can be 
rewritten as g(x) = -g’(x) and a maximization 
procedure could be applied if we use the formula 
f’(x) = -f(x). The equality and inequality constraints

fitted, their position and width are usually specified 
by the user so that the experimental spectrum 
could be reconstructed with a minimum error. In 
order to meet convergence criteria, the algorithm 
may ignore existing peaks, add additional 
absorption bands, or deform peak shapes, leading 
to physically meaningless results as the fitted 
distributions cannot be associated with real 
components existing in the sample. Moreover, the 
characteristics of the curves (center, amplitude, 
and variance) are computed in a way that guarantees 
similarity to the experimental spectrum, and do 
not correspond to the absorbance of underlying 
components (functional group in our case). As a 
result, these characteristics cannot be safely used 
in quantitative calculations. Thus, the introduction 
of complementary information about the nature of 
the sample becomes necessary for obtaining 
substantial and valid results. 
Following this direction, in the current work we 
present a novel curve-fitting algorithm, which 
effectively determines the peak shapes of the 
absorption bands corresponding to the methyl and 
methylene groups in the 3000-2800 cm-1 region of 
the IR spectrum of hydrocarbon mixtures. The 
spectrum is deconvolved by modelling the original 
signal as sum of three Lorentzian and one modified 
asymmetric Gaussian distributions. The novelty in 
our approach lies on the fact that the convergence 
of the deconvolution algorithm is guided by an 
additional structural constraint, implying that the 
peak areas of the symmetric and asymmetric 
vibrations of both methyl and methylene groups 
should be equal, if weighted by their specific 
molar absorptivity, since they rise from the same 
population in each sample. The molar absorptivities 
are experimentally determined from the IR spectra 
of pure hydrocarbons (alkanes, cycloalkanes, alkyl 
aromatics), for which the quantities of the methyl 
and methylene groups are known. Another feature 
of the proposed methodology is the fact that the 
optimization procedure can be enriched with any 
meaningful constraint defined by the user, thus 
coupling appropriate chemical information with 
the curve-fitting procedure and the mathematical 
model adopted. In addition, no prior knowledge  
or assumption on the nature of the data is required 
in the optimization process. The deconvolution 
methodology was tested on an extended set of 
petroleum fractions covering the range from volatile 
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where λ, μ are the Lagrange multipliers of 
constraint functions h and g, respectively. The 
idea of SQP is to model the quantities described 
above at the current point xk (k is the current 
number of the iteration state) by a quadratic sub-
problem and to use its solution to find the new 
point xk+1. Adopting the Lagrangian L as the 
objective functional, the original optimization 
problem is transformed to [10, 11]: 

 
 
 
 
 
 
 
 
increment d(x), suitable step length α is computed 
such that M(xk + dx) < M(xk). The most popular 
choices of merit functions are augmented 
Lagrangian and lp–norms, p ≥ 1 [12]. 
In our model, the objective function f(x) is the 
Mean Square Error (MSE) between the approximated 
spectrum through the curve fitting algorithm and 
the original experimental FT-IR spectrum, defined 
as 

( )2
1

1

( ) ( ) ( ) ,x x x
n

i estimated i originaln
i

MSE S S− −
=

= • −∑   

                                                                            (5) 

where n is the number of data points in the 
spectrum and Si-estimated(x) and Si-original(x) form the 
spectrum values at point i of the approximated 
and original signals, respectively. As mentioned 
earlier, we model the overall signal as the sum of 
three symmetric and one asymmetric distributions, 
i.e. Gaussian-based, Lorentzians and Extreme-
value curves, which have been tested in the 
representation of spectroscopic peaks [13]. These 
distributions, referred to as d1-d4, correspond to 
the absorbance bands at 2865-2845, 2880-2860, 
2935-2915, 2970-2950 cm-1, respectively. Thus, 
the modeled spectrum is defined in the following 
form: 

may be linear, expressed in the form A*x – b = 0 
and C*x – d ≤ 0, or non-linear in general.  
The formulation through Lagrangian functions 
achieves the linearization of both inequality and 
equality constraints. The Lagrangian of the 
problem in equation (1) is expressed as: 

1 1

( ) ( ) ( ) ( ) ,x,λ,μ x x x
m m

i i
i i

L f h gι ιλ μ
= =

= − −∑ ∑         (2) 

 
 
 
 
 
 
 
 
 
 
where d(x) = x-xk is the parameters vector 
displacement, L(xk, λk, μk) is the Lagrangian of 
the objective function f(x), λk, μk are the Lagrange 
multipliers vectors of the constraint functions 
h(x), g(x), respectively at iteration step k and 
HL(xk, λk, μk) is the Hessian (matrix of second 
partial derivatives) of the Lagrangian L , defined as 

2 (x ,λ ,μ )(x ,λ ,μ )
x x

k k k
k k k

k k
LHL ∂

=
∂ ∂                          (4) 

The SQP implementation consists of three main 
stages. At the first stage, the Hessian matrix of the 
Lagrangian is updated, while remaining positive 
definite. The second phase includes the quadratic-
programming procedure where the estimate of  
the active constraints at the solution point and the 
“search direction” kd

∧  are updated (via minimization 
of the objective function while remaining on any 
active constraint boundaries). After the new search 
direction is found, the next iteration point xk+1 and 
the Lagrange multipliers λk+1 and μk+1 are 

extracted. The final stage involves the line search 
and merit function calculation, which determine 
the global convergence of the algorithm among 
the computed local minima by means of 
appropriately selected merit functions M. At the 
(k+1)-st iteration, having determined the Newton

1minimize   ( ) ( ) ( ) ( ) ( )
2

over  ( )
subject to   ( ) ( ) ( ) 0   
                  g( ) ( ) ( ) 0  
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alkylate, reformate, isomerate, light cycle oil, and 
asphalt fractions, respectively. The samples were 
collected from three refineries, which process 
crude oils of different origin. Additionally, a sample 
set consisting of thirteen pure hydrocarbons 
(analytical grade purity solvents) was also used. 
Namely eight normal alkanes (C6, C7, C12, C13, C14, 
C15, C16, C17), four alkyl-benzenes (butyl, hexyl, 
oktyl, decyl) and cyclohexane were analyzed by 
FT-IR. 
The spectroscopic analysis was carried out on  
a Perkin-Elmer Spectrum 1000 FT-IR with a 
deuterated triglycine sulfate (DTGS) detector. 
Liquid samples were introduced using a horizontal 
attenuated total reflectance HATR (PIKE 
Technologies) cell with a zinc-selenide (ZnSe) 
crystal. For the solid samples (wax, asphalt), a 
thin film of the substance was formed on the  
IR cell crystal by introducing the sample 
dissolved in n-hexane or chloroform, respectively, 
with subsequent evaporation of the solvent under 
a nitrogen stream. The spectra were acquired in 
absorbance mode as 20 co-added scans within the 
range 4000-650 cm-1 at a resolution of 2 cm-1. All 
the obtained spectra were digitized with a step of 
2 cm-1. The 3150-2750 cm-1 band, after baseline 
subtraction (straight line), was used in the 
subsequent calculations, which were developed in 
Matlab R2010a environment. Characteristic FT-
IR spectra of the samples under study are 
presented in Figure 2 (naphtha straight-run, diesel, 
distillate vacuum, residue atm). 
 
4. RESULTS AND DISCUSSION 
As described above, the aim of this work is  
to investigate the ability to fit a suite of 
distributions (statistically defined peaks) to the 
FT-IR spectrum of petroleum samples in the 
region of 3000-2800 cm-1, in such a way that they 
quantitatively reflect the presence of methyl and 
 

 
 
 
 
 

where z is the vector of the wavelengths (cm-1) 
values, i = 1, 2, 3, 4 defines the number of the 
approached distribution, αi, μi , σi  are the amplitude, 
the mean value and the standard deviation of  
the mathematical distribution di, respectively, 
representing the height (αi), the position parameter 
(μi) and the scale parameter (σi) of each curve.  
A characteristic estimated spectrum extracted as 
the sum of four distributions is depicted in Figure 1. 
The parameters vector x over which the objective 
function (MSE) will be minimized is constructed 
by the 12 shape characteristics (3 shape parameters 
for each of the four distributions) [α1, μ1, σ1, α2, 
μ2, σ2, α3, μ3, σ3, α4, μ4, σ4]. In the proposed 
modeling, there are no linear constraints on the 
variables except that they are strictly positive 
(relaxed constraint in order to obtain chemically 
valid results as negative spectrum values have no 
real meaning) and the centers (μi) of the peaks 
have a distance tolerance of +/-10 cm-1 from the 
corresponding starting values. The key idea of this 
optimization scheme is to guide the minimization 
procedure through a carefully selected initial state 
and then “relax” the constraint values. In this way, 
the algorithm selects the optimal solution from a 
large variety of possible directions confirming with 
the assumptions. The non-linear limitations are 
described in detail in “Results and Discussion”. 
 
3. MATERIALS AND METHODS 
The FT-IR spectra of seventy petroleum samples 
were acquired over the 4000-650 cm-1 range. The 
sample set covers practically all the commercially 
significant intermediate and final products in a 
modern petroleum refinery, from light naphthas  
to solid asphalt. Briefly, the sample set contains 
19 naphthas, 10 vacuum gas-oils, 10 residual 
fractions, 7 fuel oils, 3 atmospheric gas-oils, 4 
kerosines, 5 diesel fuels, 2 light solvent mixtures, 
2 white spirits, 2 gasolines and one sample of wax, 
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assuming that the corresponding peak shapes have 
been correctly determined. Moreover, this ratio 
should be equal to unity if the areas could 
be weighted by their specific molar absorptivity 
coefficient. These absorptivity values can be 
determined based on the experimental FT-IR signals 
of pure hydrocarbons. For these model compounds, 
the number of methyl and methylene groups is 
known and, therefore, a molar absorptivity (Ai) 
value for each group can be calculated, taking into 
account the corresponding densities and molecular 
weights of the samples. Assuming that the penetration

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
methylene functional groups. In this region, four 
main absorbance bands exist at 2865-2845, 2880-
2860, 2935-2915 and 2970-2950 cm-1. The pair of 
the peaks 2865-2845 and 2935-2915 cm-1 correspond 
to symmetric and asymmetric vibrations of the 
methylene groups while 2880-2860 and 2970-
2950 cm-1 correspond to the respective vibrations 
of methyl groups present in the sample. The 
absorbance of these groups (and the areas of the 
fitted peaks respectively) in each pair are formed 
actually from the same population of functional 
groups and therefore their ratio should be constant,
 

Figure 1. Estimated spectrum as the sum of the four proposed statistical distributions (Three Lorentzian
distributions and one Extreme Value). 

Figure 2. FT-IR spectra of characteristic petroleum fractions (naphtha straight-run, diesel, distillate 
vacuum, residue atm). 
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μ3, σ3, α4, μ4, σ4] the specific values [0.7, 2855, 
5, 0.5, 2870, 5, 1.2, 2925, 5, 0.75, 2960, 5] are 
used. It is concluded that three Lorentzian curves 
for peaks d1, d2, and d4 and one Extreme Value 
distribution for peak d3 provided the best 
reconstruction of the spectra as indicated by the 
mean squared error (MSE). The selection of the 
curve d3 shape (asymmetric methylene stretching) 
was additionally motivated by previous molecular 
modelling studies [6], where it was shown that 
methylenes in the methyl terminated aliphatic 
chains (MTAC) overlap significantly with methylene 
groups associated with naphthenic rigs or with 
aromatic units (MBA). Since, in general there is 
no prior information on the extent of this overlap 
for the tested petroleum fractions, the Extreme 
Value (EV) distribution curve is justified for 
exhibiting asymmetry towards smaller wavenumbers. 
At the second step, using the above selected 
distributions the areas of the four methyl and 
methylene absorption bands of the pure 
hydrocarbons were determined and the respective 
Ai

'  coefficients were calculated through a least-
squares minimization procedure. These values 
were inserted in the deconvolution model and new 
areas of the methyl and methylene peaks were 
determined. At this stage, a non-linear constraint 
was introduced in the model, based on the 
assumption that the ratio of the weighted areas of 
distributions d1 and d3, corresponding to the 
absorbance of methyl groups, should differ no 
more than 20% from each other. The same should 
hold for the weighted areas of distributions d2 and 
d4, corresponding to the absorbances of 
methylene groups. The weighted area of each 
distribution was calculated by dividing the area 
below the curve with the corresponding absorptivity 
coefficient Ai

'  (i = 1, 2, 3, 4). The algorithm was 
applied in an iterative way on the model compounds 
data until no significant changes were observed in 
both the MSE of the reconstructed signals as well 
as in the values of Ai

'  coefficients. The finally 
computed peak areas for the methyl and methylene 
groups were found to provide ratios for the 
distributions d1/d3 and d2/d4 of mean value 1.02 
and 1.07 with a standard deviation of 0.07 and 
0.13, respectively. The determined Ai

'  coefficients 
and the model parameters are shown in Table 1.  

depth in the ATR cell is of the same magnitude 
for all the analyzed samples, Ai can be calculated 
following the equation (7): 

*
* *

i
i

S MWA
d V n

=
        (7) 

where: i – the index of each fitted peak (i = 1, 2, 3, 4)
Si - area of the peak i 
MW - molecular weight of the model compound 
d - density of the model compound 
n – number of methyl or methylene groups 
present in the compound's molecule 
V – the sample volume penetrated in the ATR cell 
Although the volume V is not known, it is 
assumed to be constant for all analyzed samples and 
therefore can be omitted in the calculations. Thus, 
equation (7) results in a pseudo-molar absorptivity 
value Ai

' = Ai *V , which is obviously instrument-
specific. This fact does not limit the applicability 
of the proposed algorithm in a different spectrometer, 
since the Ai

'  coefficients may be readily recomputed. 

The deconvolution methodology was developed 
following three subsequent steps:  
- Step 1: selection of the appropriate 
mathematical distributions to fit each absorbance 
band 
- Step 2: calculation of the molar absorptivity 
coefficients Ai

'  based on model compounds spectra

- Step 3: implementation of the deconvolution 
procedure through the application of the proposed 
non-linear constrained optimization algorithm to 
the IR spectra of petroleum fractions. 
Initially, the entire data set consisting of the IR 
spectra of the analyzed pure hydrocarbons, as well 
as those of petroleum fractions, was treated using 
the above described deconvolution algorithm. The 
basic set of distributions was selected through a 
common set of mathematical functions used in 
chromatography [13] and consists of Gaussian, 
Lorentzian and Extreme Value distribution functions, 
as this combination produced the best quality 
metrics value (Mean Squared Error) in the proposed 
modeling. At the first stage, the algorithm is 
implemented constrained only by the fitted peak 
positions and allowing a shift of the peak maxima 
±10 cm-1 from the anticipated wavenumber. As 
starting points for the [α1, μ1, σ1, α2, μ2, σ2, α3,
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each local minimum was stopped if its absolute 
difference from the corresponding value of the 
previous iteration was less than 10-5 (termination 
criterion); the maximum number of iterations was
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As it is demonstrated in this table, each parameter 
was updated by a tolerance of +/-10-6 from its 
previous state and the constraint reached a tolerance 
of 10-3 from the target value. The calculation of
 

Table 1. Algorithmic setup. 

Algorithm parameters and calibration 
Objective function f(x)                                           MSE(x) 
Variables vector x              [α1,    μ1,    σ1,    α2,    μ2,    σ2,   α3,    μ3,    σ3 ,   α4,    μ4,   σ4 ] 
Initial state x0                                [0.7  2855   5     0.5  2870   5    1.2  2925   5    0.75  2960   5 ] 
 
Shape parameters                      Lower bound                               Upper bound 
αι , i = 1, 2, 3, 4                                      0                                                Infinite 
μi , i = 1, 2, 3, 4                    2845  2860  2915  2950                  2965 2880 2935 2970 
σi , i = 1, 2, 3, 4                                   0.01                                              Infinite 

Linear constraints h(x)                                               None 

Absorptivity coefficients Ai
'                          515   1200   1128   2763 

Nonlinear constraints g(x)                 (area_d1/A’1)/(area_d3/A’3) - 1.2                  g1(x) ≤ 1.2 
                                                             0.8-(area_d1/ A’1))/(area_d3/ A’3)      0.8 ≤ g2(x) 
                                                             (area_d2/ A’2)/(area_d4/ A’4) - 1.2                g3(x) ≤ 1.2 
                                                             0.8-(area_d2/ A’2)/(area_d4/ A’4)                  0.8 ≤ g4(x) 

X vector tolerance                                                         0.000001 
(difference between successive points) 
Objective function tolerance                                         0.00001 
Constraints tolerance                                                       0.001 
Maximum number of iterations                                  1000000000 

 

 

Figure 3.  Τhe experimental and the reconstructed spectrum of the model compound used 
(n-tridecane (n-C13)) for the determination of coefficients Ai

' . 
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that in all cases the experimental signals were 
efficiently reconstructed, as demonstrated by the 
small values of the MSE in Figure 5. Furthermore, 
the centers of the determined four peaks fitted
under the experimental spectrum exhibit consistent 
localization in wavenumber, as indicated by the 
tight, non-overlapping bounds of the corresponding 
Box plots in Figure 6. In addition, the algorithm 
constraints were satisfied in every case.  
The above considerations demonstrate that the 
algorithm fits the selected peaks at consistent
 

selected as 109. In Figure 3, the experimental and 
the reconstructed spectrum of n-tridecane (n-C13) 
obtained through the deconvolution algorithm are 
depicted. 
Finally, at the third step the deconvolution model 
was applied to the IR spectra of the petroleum 
fractions, attempting to approximate the original 
spectra with the curve originated as the sum of  
the four statistical distributions. The original and 
estimated spectra of a representative sample 
(VGO light) are depicted in Figure 4. It was found
 

Figure 4. Original and estimated spectrum of a representative sample. 
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Figure 5. Quality metrics (MSE) of the optimization results.
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should be equal, weighted by their specific molar
absorptivity, since they rise from the same 
population in each sample. The molar absorptivities 
of these groups are experimentally determined 
from the IR spectra of pure hydrocarbons (alkanes, 
cycloalkanes, alkyl aromatics), for which the 
quantities of the methyl and methylene groups are 
known. The particular advantage of the proposed 
modeling scheme is that it enables the accurate 
reconstruction of the experimental signal, while 
preserving equal areas under the spectrum for the 
symmetric and asymmetric vibrations of methyl 
and methylene groups weighted by their specific 
molar absorptivities. The robustness of the 
developed deconvolution scheme was verified by 
examining the identified methyl and methylene 
peak areas in an extensive set of petroleum samples. 
The method will be useful in compositional 
calculations of petroleum fractions, where the use 
of peak areas instead of less accurate peak heights 
will improve their accuracy. 
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