
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The wave nature of molecular responses in ecotoxicology 
 

ABSTRACT 
Toxicity is described by classical dose-response 
(also called concentration-response) relationships 
that usually follow linear or sigmoidal trends. The 
toxicity of a compound is interpreted as the increase 
in intensity of the effect as a function of exposure 
concentration or time. This classic descriptor of 
toxicity was and is still successfully used in 
toxicology and pharmacology to describe various 
toxic responses (decreased survival) and sub-lethal 
effects at the organ or systemic levels (e.g., weight 
loss or decreased growth). The advent of biomarkers 
at the molecular level enabled a better understanding 
of the way chemicals negatively act at the fundamental 
level. In some cases, dose-response curves showed 
curious non-linear relationships which complicate 
the prediction of adverse toxic outcomes of 
biochemical/molecular changes. A close examination 
of the relationships between the intensity of 
biochemical markers and concentration suggests 
that biological effects are oscillatory (cyclic) in nature. 
Spectral analysis using Fourier transformation can 
decompose signal intensities as a combination of 
wave functions to describe the cyclic nature of 
biochemical changes. We tested this approach with a 
real case, exposing juvenile rainbow trout to seven 
rare earths using a gene expression quantitative 
real-time polymerase chain reactions (qPCR) array 
composed of 12 genes involved in toxic stress 
responses and compared those responses with the 
hepatic somatic index, fish condition and trout 
mortality endpoints. Multiple regression analysis on 
the classical endpoints (intensity of the 12 transcripts) 
showed only a few significant relationships between 
gene expression changes and toxicity. However, 
spectral analysis transformation of the gene expression
 
 

data revealed highly significant relationships (r > 0.95) 
with liver weight data and mortality. This study 
proposes a data transformation based on the cyclic 
properties of molecular changes using spectral 
analysis with Fourier transformation. This novel 
approach considers the possibility that toxic responses 
could behave as waves providing a means to explore 
relationships between the mode of action of 
chemicals and adverse outcome pathways. 
 
KEYWORDS: wave theory, toxic responses, 
biomarkers, adverse outcome pathways 
 
INTRODUCTION 
The toxicity of chemicals or physical agents is 
typically described by dose-response relationships, 
which usually follow a linear or sigmoidal trend. 
The intensity of effects is plotted against exposure 
concentration or duration (Figure 1A). The direct 
interpretation of this relationship is that the intensity 
of a given effect is directly proportional to the 
exposure concentration or duration. These 
relationships are classical textbook descriptors of 
toxicity [1]. To quote Paracelsus (1493-1541), 
“All things are poison and nothing is without 
poison. Solely the dose determines that a thing is 
not a poison”. It follows that the more intense 
the response, the more harmful the damage, and 
that at low doses no toxicity occurs. Thus, the 
relationships between the intensity of responses 
and exposure concentration or duration formed 
one of the fundamental pillars of pharmaceutical 
and toxicological sciences. Toxic effects at the 
sub-cellular and molecular levels have gradually 
emerged in the last 50 years through the use of 
biomarkers to gain a better understanding of the 
 

Aquatic Contaminants Research Division, Environment and Climate Change Canada,  
105 McGill Street, Montreal, QC, Canada. 
 

F. Gagné 
 

Current Topics in 
Toxicology

Vol. 12, 2016 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 2 4 6 8 10 12 14 16 18 20 22

Exposure concentration or duration
(ug/L or time)

0

2

4

6

8

10

12

14

In
te

ns
ity

 o
f e

ffe
ct

 Linear
 Sigmoïd

A

  

 

12 F. Gagné

 

 

-5 0 5 10 15 20 25 30 35 40 45

Exposure concentration
(ug/L)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

G
en

e 
ex

pr
es

si
on

(n
or

m
al

iz
ed

 a
ga

in
st

 c
on

tro
l)

 mRNA 1
 mRNA 2
 mRNA 3
 mRNA 4
 mRNA 5

B

Figure 1. Classical dose-response relationships and cyclic behaviour of biochemical markers. 
Intensity of effects (e.g., number of injured organisms) is plotted against exposure concentration or 
duration, which could be the internal dose (amount in blood or in tissues), external dose (amount in 
the water or food) or the time exposed to a given concentration of contaminant (A). A typical 
example of cyclic behaviour based on real expression of genes with the exposure concentration. The 
y axis represents the intensity (relative to control cells); the x axis shows the exposure concentration (B).
The curves represent the least square fitting of the data points. The curves revealed the periodic or 
cyclic behaviour in gene expression.  
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sub-lethal effects in the traditional way, i.e., intensity 
of effect as a function of exposure concentration, 
might not be appropriate and might hide a more 
fundamental nature of biochemical changes in cells.  
Biochemical oscillations or cyclic behaviour are 
not uncommon in organisms. Glycolytic oscillation 
of cofactors such as reduced nicotinamide adenine 
dinucleotide (NADH) was first reported in yeast 
cells in the late 1950s [6, 7]. Indeed, yeast cell 
lysates supplemented with trehalose will initiate 
oscillations in NADH levels for up to 90 min; 
phosphofructokinase was identified as the target 
enzyme responsible for these fluctuations. This 
enzyme is regulated by NAD+ and ADP, which 
respectively activate and inhibit the conversion of 
fructose 6-phosphate into fructose-1,6-biphosphate. 
Another key oscillatory system is the peroxidase–
oxidase reaction, which is important during oxidative 
stress in ecotoxicology [8]. The enzyme catalyzes 
the oxidation of NADH in the presence of O2. The 
co-factors 2,4-dichlorophenol/methylene blue are 
also needed to assist the transfer of electrons. 
Sustained NADH oscillations are produced when 
NADH is continuously added or generated by the 
glucose 6-phosphate/NAD+ dehydrogenase system. 
This suggests that some enzymes involved in the 
elimination of oxygen radicals could show oscillatory 
behaviour. Oscillatory changes are also observed 
at the gene expression level [9]. Large-amplitude 
and phase-locked oscillations of gene expression 
in developing C. elegans larvae was produced by 
periodic transcription. Nearly 1/5th of the expressed 
genes oscillated with an 8 hr period and hundreds 
of gene changed at > 10-fold. These large-amplitude 
oscillations in RNA from whole worms indicate 
synchronization of gene expression pathways across 
cells and tissues, suggesting that oscillatory changes 
in transcript constitute a new approach to studying 
the process of coordinated gene expression. At 
a more toxicological level, hepatic induction of 
cytochrome P4501A1 by 2,3,7,8-tetrachloro-p-
dioxin showed a biphasic response in rats [10]. 
The activity of 7-ethoxyresorufin O-deethylase 
was first maximally induced in mice at 7 days 
following exposure to 3 µg and 30 µg TCDD/kg. 
However, at higher doses of TCDD (> 45 µg/kg), 
the activity was further increased two-fold from 
the apparent maximal response, resulting in a 
strange biphasic log dose-response curve. 

mechanisms of action of xenobiotics in cells or 
tissues. In order to understand mechanisms of 
action, it is fundamental to know how and why a 
substance can be toxic. Moreover, from the ecological 
risk perspective, risk assessment based on short-
term toxicity tests with classical endpoints at the 
individual level proved inadequate for prediction 
and prevention of toxic impacts in organisms. 
According to the National Academy of Science 
report Toxicity Testing in the 21st Century [2], 
toxicity tests based on the classical endpoints of 
survival, growth and reproduction were less able 
to prevent impacts in ecosystems. It was recognized 
that early warning systems — based, for example, 
on molecular or cellular function endpoints — were 
needed to better understand (and predict) long-term 
impacts. 
Studies involving molecular markers quickly revealed 
strange dose-response curves that deviated from 
linearity and were totally unpredictable by classical 
toxicology [3, 4]. This complicates the prediction 
of toxic outcomes based on biochemical/molecular 
changes. For example, endocrine disrupters are a 
special class of compounds that act at very low 
concentrations and behave strangely when exposure 
concentrations are increased progressively. Indeed, 
the direction of effects could completely reverse 
as the exposure concentration increases, forming 
U curves (or inverted U’s) and sometimes M-shaped 
dose-response curves. One noteworthy case of 
such strange behaviour is the inverted U-shaped 
concentration-response curve, representing hormesis. 
Hormesis is the phenomenon in which an agent 
produces harmful biological effects at moderate to 
high doses but has beneficial effects at low doses 
[5]. For example, a low dose of ionizing radiation 
could stimulate DNA repair activity and protect 
cells from further damage, thereby improving cell 
survival. This raised the possibility that chemicals 
could have opposite effects at lower and higher 
doses, which could dramatically change the risk-
assessment paradigm for environmental pollutants. 
A close examination of the relationships between 
the intensity of biochemical markers and 
concentration suggests that biological effects are 
cyclic in nature and may behave as waves. Indeed, 
U-shaped, inverted U-shaped and other non-linear 
concentration-response relationships suggest that 
the effects of contaminants are cyclic (periodic) in 
nature (Figure 1B). In this respect, expressing 
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decreases, inverted U-shaped dose-response curves).
In addition, non-significant baseline (noise) responses 
that do not differ from controls were also prepared. 
Curve fitting of intensity of the signal (hypothetical 
biomarker response) was done using the least square 
difference method. These relationships were then 
analyzed using spectral analysis and Fourier 
transformation as described below. 

Case study of rainbow trout exposed to rare 
earth elements 
A real case study is presented to examine changes 
at gene expression level and whether they can 
predict impacts on hepatic somatic index (organ 
level), fish condition (fish weight/length ratio) and 
lethal concentration (mortality). Rainbow trout 
juveniles (1- to 2-cm fork length) were exposed to 
increasing concentrations of selected rare earth 
elements (Ce, Er, Sm, Nd, Y, Gd and La) for 96 h 
at 15 °C. The exposure concentrations were 40, 8, 
1.6, 0.32 and 0.064 mg/L for each element cited 
above. The fish were continuously aerated to reach 
98% saturation or better and were subjected to an 
8/16 hr dark/light cycle. Fish were monitored three 
times daily. Any fish showing signs of distress or 
found belly-up were euthanized in 50 mg/L Tricaine 
in dechlorinated tap water. At the end of the 
exposure period, the surviving fish were placed 
in 50 mg/L Tricaine for 2 min, then placed on 
ice and weighed. The livers were excised, washed 
in ice-cold phosphate buffered saline (145 mM NaCl, 
5 mM KH2PO4, pH 7.4, containing 5 mM 
ethylenediamine tetraacetate (EDTA)), weighed 
(after blotting on filter paper) and immediately 
transferred to RNALaterR solution (Thermo Fisher 
Scientific, Ontario, Canada) to ensure total RNA 
integrity against RNases. The livers were then stored 
at -85 °C until the gene expression assessment stage. 
Changes in gene expression were determined using 
real-time quantitative qPCR methodology [11]. Total 
RNA levels were extracted using a commercial 
extraction kit (Quiagen Inc, Ontario, Canada) and 
RNA concentration/purity was determined using 
a Nanodrop 1000 ultraviolet-visible spectrometer 
(Thermo Fisher Scientific, On, Canada). RNA 
integrity was confirmed using a microfluidic-based 
electrophoresis system (Experion Automated 
Electrophoresis System; BioRAD, Ontario, Canada). 
Genomic DNA was completely removed and cDNA 
was produced from extracted RNA samples using 
a commercial kit (QuantiTect reverse transcription
  
 

The cyclic nature of any signal could be analyzed 
by spectral analysis using Fourier transformation, 
which decomposes the signal into specific wave 
functions at different frequencies. Similar to the 
way white light separates into different colours 
after passing through a prism, spectral analysis 
splits a signal into underlying waves at different 
frequencies (colours). Wave functions at the same 
frequency and in phase could combine and result 
in resonance. Resonance is the accumulation of 
wave amplitudes at the same frequency, which 
could culminate in drastic effects at higher level 
of organization (for example, the culmination of 
acoustic notes at the same frequency that makes a 
glass vibrate until it shatters). This process could 
form the basis of emerging properties of complex 
mixtures. An emergent property arises from the 
interaction between the elements forming the 
mixtures and biological macromolecules where 
each element alone does not produce the observed 
effects. If toxic responses at the molecular level at 
a given frequency combine, then the effects at 
the next level of biological organization could 
emerge. This study examines the hypothesis that 
changes at the sub-cellular and molecular levels 
display a cyclic, wave-like behaviour that is not 
fully described by classical dose-response based 
on intensity–exposure concentration relationships. 
The purpose of this study was to characterize the 
cyclic nature of concentration-response (intensity) 
relationships as another means to describe toxicity 
and to verify whether changes at the molecular 
level display wave-like properties. First, spectral 
analysis using Fourier transformation will be 
applied to simulated but realistic data in order to 
gain an understanding of the basic properties of 
wave-like transformation of biochemical changes. 
Then, this transformation will be used to predict 
changes in toxicity, in fish weight changes, and 
liver index using real examples of trout juveniles 
exposed to selected lanthanides for 96 h followed 
by change in the levels of 12 transcripts involved 
in toxic stress. An attempt will be made to find 
significant predictions of toxicity using wave 
descriptors of molecular changes in cells. 
 
METHODS 

Simulated concentration-response curves 
Concentration-response data were simulated to 
generate typical relationships (linear increases and 
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8 observations were from the controls, the next 8 
observations were from the lowest exposure 
concentration, the next 8 observations were from 
the next-highest exposure concentration, and so 
forth. Fourier analysis could be performed on space 
or time series where the exposure concentration 
range is the progression in “space”. Spectral analysis 
using Fourier transformation will transform any 
series of data into a 2D plot with the frequency of 
the signal on the x axis and the periodogram (Pk) 
value, which represents the signal “variance”, on 
the y axis. Fourier transformation seeks wave 
functions that best describe the data at various 
frequencies: F(x,t) = a0 + ∑ [Ak*sin(fk*nπ(x/L)) + 
Bk*cos(fk*nπ(x/L))] with k = 1 to q observations, 
and A and B are the coefficients related to the 
amplitude of the wave function. The value x 
corresponds to a given exposure concentration, L 
is the exposure concentration range, and n is the 
harmonic value (n = 1, 2, 3…). The Pk value is 
mathematically defined as the sum of squared 
values of the sinus and cosinus coefficients A and 
B of the wave function: Pk = ∑(A sink)2 + (B 
cosink)2 * N/2. The Pk could be interpreted as 
the sum square (variance) of the data at each 
frequency with k = 1 to q observations (here, 3 
treatments × 8 replicates = 24 observations). All 
statistical analyses were performed using the 
Statistica software package (Version 8, France). 
 
RESULTS 
In order to understand the cyclic nature of 
concentration-response relationships using Fourier 
transformation, the analysis was performed first 
on simulated but realistic concentration-response 
curves (Figures 2A to 2F). In the first example, there 
was no significant effect, as confirmed by ANOVA 
(Figure 3A). Thus, the data represents the natural or 
“normal” variability of the biomarker response. 
Spectral analysis of the data revealed a series of 
frequencies (0.07, 0.22, 0.24 and 0.47) with small 
non-significant Pk values (0.024, 0.031, 0.032 and 
0.06 respectively) (Figure 2B). The Pk value is a 
measure of the natural variance of the hypothetical 
biomarker. These frequencies correspond to the 
14th, 5th, 4th and 2nd observations, indicating small, 
non-significant fluctuations of the biomarker. The 
lowest frequency (0.47) with the highest Pk value 
(0.06) is considered the inter-individual or 
replicate variability, which is the fundamental 

kit; Quiagen Inc., Ontario, Canada). The incubation 
temperature was 42 °C for 15 min followed by 95 °C 
for 3 min. The newly produced cDNA was then 
stored at -85 °C. The genes used in this study are 
listed in table 1. For each gene, at least two primer 
pairs were evaluated and were synthesized from 
integrated DNA technologies (Coralville, IA, USA). 
Quantitative real-time polymerase chain reactions 
(qPCR) were performed with the iQ SYBR Green 
Supermix (Bio-Rad, Ontario, Canada) using a 
Mastercycler ep realplex2 thermocycler (Eppendorf, 
USA). For each primer pair, a calibration curve 
(starting cDNA concentration 20 ng, 8 serial dilutions 
in five-fold increments) was produced with 
amplification efficiencies between 90% and 110%. 
Each reaction was run in duplicate and was 
composed as follows: 5 µL of cDNA (20 ng), 12.5 µL 
of iQ SYBR Green Supermix, 0.2 mM of each 
dNTP (dATP, dTTP, dCTP, and dGTP), 25 U/mL 
iTag DNA polymerase, 3 mM MgCl2 and 10 nM 
SYBR Green 1. Primer concentrations were 300 nM, 
and diethylpyrocarbonate-treated bidistilled water 
(Ambion, USA) was added to reach 25 µL total 
volume. Temperature cycles were as follows: 95 °C 
for 2 min followed by 40 cycles of 95 °C for 15 s, 
60 °C for 15 s, and 70 °C for 15 s. Amplification 
specificity was verified using melting curve 
analysis: 95 °C for 15 s and 57 °C to 95 °C gradient 
steps in 10 min total time. Controls consisted of the 
reaction mix without addition of template cDNA. 
The following genes were used as reference for 
normalization: β-tubuline and Elongator factor 1α 
(EL1α). 

Data analysis, spectral analysis and Fourier 
transformation 
The data were first analyzed the traditional way 
by the mean and standard deviation from N = 8 
replicates in each treatment. The normality of the 
data was checked using the Shapiro–Wilk tests 
before analysis of variance (ANOVA). Analysis of 
variance and critical difference between treatments 
were appraised with the least square difference test. 
Significance was set at α < 0.05. Spectral analysis 
using Fourier transformation was performed on 
the gene expression data normalized against the 
reference gene EL1α. Each measurement (8 replicates 
per treatment) was randomly placed in series of 
8 replicates starting with the controls, the lowest 
concentration treatment etc. Hence, the first 
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of REs lead to changes in protein conformation 
(denaturation), cell proliferation, cell growth-arrested 
DNA repair and oxidative stress (SOD). Moreover, 
genes involved in xenobiotic biotransformation were 
often influenced by most REs (70%). 
To identify key adverse pathways, we compared 
gene expression results with acute toxicity, change in 
condition factor and hepatic somatic index (HSI) 
using multiple regression analysis (Table 3). An 
example of gene expression data for Ce(III) is shown 
for GADD45 and MT genes in juvenile fish 
exposed to Ce(III) for 96 h at 15 °C (Figure 3). The 
first graph (A) shows the classical representation 
of transcript levels (mean and standard deviation), 
and the second (B) shows spectral analysis using 
Fourier transformation. The transformation revealed 
that changes in transcript levels were found at two 
frequencies (0.05 and 0.25), which were lower 
than the fundamental frequency of GADD45 and 
MT transcripts (0.4 and 0.45). The analysis was 
conducted using groupings based on the influence 
of REs on the expression of genes, as described 
above. Hence, group 1 genes are those that were 
influenced by all REs (HSP70, PCNA, GADD45 
and SOD), group 2 genes were affected by at least 
5 out of 7 of the tested REs (CYP1A1, GST and 
MT), and those in group 3 were less influenced by 
the REs. Interestingly, group 2 comprises genes 
involved in xenobiotic biotransformation. Factorial 
and discriminant function analysis confirmed that 
the above genes were significant factors in the 
total variance of the data (data not shown). The 
analysis revealed that group 1 genes (HSP70, 
GADD45, PCNA and SOD) and group 2 genes 
(GST, MT and CYP1A1) had high factorial 
weights which explained 67% of the total variance. 
The predictions were first calculated based on 
the response factor (normalized against E1α) (the 
classical method of analyzing this type of data) and 
then using the Pk values (derived from gene 
expression data normalized against the Elα reference 
gene) to integrate the “amplitude” of the signal at 
given frequencies. Fourier transformation of the gene 
expression data revealed that genes often expressed 
important changes at frequencies between 0.05 and 
0.2 which could bring about resonance. In this 
approach, the Pk values were added to determine 
whether this metric was also predictive to RE 
toxicity. Resonance could form the basis of 
emergent properties of chemical mixtures where 
 

frequency of the biomarker response. In the next 
example, a classical linear concentration-response 
curve is provided (Figure 2C). With respect to the 
controls, the response factor reaches 9-fold; such 
high intensity is not unusual with gene expression 
data. Spectral analysis of the data revealed two 
important signals at frequencies 0.07-0.09 and 0.13 
(Figure 2D). The analysis shows that a strong 
concentration-response trend is transformed into 
two signals that differ from the fundamental 
frequency (natural variability) of the biomarker. 
The frequencies of the signal correspond to the 8th 
and 12th observations, which correspond to the 
inter-treatment replicate number (8) and the next 
level of treatment (12). This indicates that most of 
the variance or change in the biomarker occurs 
after 8 observations and is much higher (Pk values 
of 4.3 and 5.6) than the Pk values of the 
fundamental frequencies (0.33 and 0.45). We 
repeated the analysis with downregulation (negative 
response compared to controls), and the results 
were similar. The occurrence of down-expressed 
responses does not influence the Pk in the same 
manner (the sums of squares are always positive). 
The analysis was also performed on inverted U 
(hormetic) concentration-response curves (Figures 2E 
and 2F). The analysis revealed that the major 
frequency occurred at 0.1 with a Pk value of 2.35, 
which corresponds to a cycle of 10 observations 
for the maximum variance in the data. Based on 
these simulated but realistic data trends, the 
induced effects often occur at a lower frequency 
than the fundamental normal frequency (variation) 
of the biomarker, which permits to separate the 
chemically (treatment-) induced effects from the 
natural variation of the biomarker.  
In the real case, we evaluated the acute toxicity 
and mode of action of selected rare earth elements 
(REs) in juvenile rainbow trout. The gene expression 
data, together with the lethal concentration that 
kills 20% of the fish, fish condition and hepatic 
somatic index (HSI), are reported in table 2. The 
96 h lethal concentrations ranged from 0.7 mg/L 
for Y to > 40 mg/L for Nd and Ce, in the following 
order: Y < Sm < Gd = Er < Nd = Ce. All the tested 
REs induced the expression of HSP70, PCNA, 
GADD45 and SOD, while MT, CYP1A1 and GST 
were influenced by at least 5 out of 7 of the REs. 
This suggests that exposures to low concentrations 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0,1 0,0 0,1 0,2 0,3 0,4 0,5 0,6

 Ce Frequency

-1

0

1

2

3

4

5

6

7

8

9

Pe
rio

do
gr

am
 v

al
ue

(P
k)

 MT
 Gadd45B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
the components do not produce change individually, 
but they produce toxicity effects when combined. 
The resonance values at frequency 0.1 are also 
reported in table 3, since the other frequencies had 
no predictive value for REs’ toxic properties, HSI 
or fish condition (fish weight/head-to-fork length). 
Fish mortality was best predicted by group 3 genes 
after Fourier transformation of the gene expression 
data (Table 3). Group 2 genes also had good 
predictive value at r = 0.7. It is noteworthy that a 
prediction of r = 0.98 was obtained with four 
genes, GLUD, SOD, CAT and CYP, which are 
involved in ammonia metabolism, oxidative stress 
and phase 1 biotransformation of planar organic 
hydrocarbons. The resonance signal at 0.1 was able 
to predict fish mortality concentrations (r = 0.63; 
p = 0.02). The HSI was best predicted by group 2 
genes, which are involved in the hepatic 
metabolism of xenobiotic with r = 0.96. Group 1 
genes after Fourier transformation were also good 
predictors of changes in HSI at r = 0.91. The 
resonance value (sum of Pk values) at frequency 
0.1 was also able to predict changes in HSI at 
r = 0.82 (p < 0.01). Fish condition (weight/head-to-
fork length) was also best predicted by group 2 
genes (r = 0.96); for group 1 genes, r = 0.90. The 
resonance value at frequency 0.1 was also predictive 
of changes in fish condition with r = 0.8. On the 
whole, the non-transformed database on intensity 
thresholds had consistently lower predictive values 
for RE lethal concentration, HSI and fish condition,
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compared with Fourier-transformed Pk values at low 
frequencies (0.05-0.2). 
 
DISCUSSION 
Fourier transformation analysis sheds light on the 
cyclic/oscillatory behaviour of molecular responses 
(here, gene expression data) and the discussion is 
developed based on the concept of the cyclic 
properties of gene expression changes (Pk and 
frequency values). The following elements were toxic 
to Rainbow trout juveniles: Y, Sm, Er and Gd. 
The toxicity of La and Ce was not detected at 
concentrations ≤ 40 mg/L after 96 h at 15 °C. In 
another study, Yb was shown to cause much more 
alteration in the development of zebrafish embryos 
than did similar concentrations of La [12]. The 40-day 
toxicity of Yb in the goldfish Carassius auratus 
was reported at concentrations of about 0.1 mg/L 
[13]. The activity of glutamate-pyruvate transaminase 
was decreased at concentrations of 0.05 mg/L and 
was inhibited at higher concentrations, indicating 
perturbations in gluconeogenesis and ammonia 
metabolism. This was corroborated by our results 
on increased expression of GLUD, another enzyme 
involved in ammonia metabolism, which was one 
of the genes that provided the best predictions of 
toxicity (Table 3). It was also reported that SOD 
activity was significantly induced but CAT activity 
was inhibited, suggesting that oxidative stress also 
occurred [13]. Gene expression analysis of SOD and 
CAT revealed that SOD was decreased by Y, while 
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Figure 3. Spectral analysis of gene expression data in rainbow trout exposed to cerium(III). 
A representative example of gene expression data in rainbow trout exposed to Ce. Classical representation of 
data with curve fitting using the least square difference (A) and following Fourier transformation (B). 
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and HSI. These relationships were revealed after the 
cyclic nature of their expression was considered, i.e., 
after spectral analysis using Fourier transformation. 
It is noteworthy that, most of the time, CYP1A1 gene 
expression was inhibited by the REs, especially 
with Gd, Nd and Ce, suggesting impairment of 
xenobiotic phase 1 biotransformation. CYP1A1 
was one of the three genes involved in xenobiotic 
detoxification (Group 2 genes), which were highly 
predictive of fish condition and HSI. Studies on 
the effects of REs on aquatic organisms are 
lacking at present. When female Wistar rats were 
injected with praseiodynium nitrate, they developed 
fatty livers, and their cytochrome P450 and b5 levels 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CAT gene expression was not significantly affected. 
This suggests that SOD was downregulated to protect 
against oxidative stress, since CAT would be inhibited. 
Moreover, SOD and CAT genes were also included 
with GLUD in group 4, the highly predictive group 
for fish mortality (r = 0.98). CAT gene expression 
levels were also included in the group 3 genes, which 
were highly predictive of fish mortality (r = 0.95). 
Lastly, GST activity was found to be induced at 
0.05 mg/L, while inhibited at higher concentrations 
in the goldfish study [13]. GST gene expression 
was significantly induced in fish exposed to Y in 
the present study and GST was one of the group 2 
genes, which were highly predictive of fish condition 
 

Table 2. Gene expression data of livers in rainbow trout exposed to lanthanides. 

 Ce Er Sm La Y Nd Gd 

CAT 0.6 
(8 mg/L)1 

1.2 
(0.32 mg/L) 

0.7 
(0.06 mg/L) ns ns ns ns 

CYP1A 0.23 
(8 mg/L) 

1.9 
(0.32 mg/L) 

2 
(0.06 mg/L) ns ns 0.6 

(1.6 mg/L) 
0.4 

(1.6 mg/L) 

GADD45 1.8 
(40 mg/L) 

11 
(1.6 mg/L) 

1.7 
(0.32 mg/L) 

2.9 
(8 mg/L) 

0.7 
(0.06 mg/L)

2.6 
(8 mg/L) 

2.6 
(1.6 mg/L) 

GLUD 1.2 
(40 mg/L) 

2.3 
(0.32 mg/L) 

0.75 
(0.32 mg/L) ns 1.5 

(0.32 mg/L) ns ns 

GST 0.5 
(40 mg/L) ns 2.3 

(0.32 mg/L) ns 1.5 
(0.32 mg/L)

1.3 
(8 mg/L) 

1.4 
(0.32 mg/L)

HSP70 3 
(8 mg/L) 

2.6 
(1.6 mg/L) 

2 
(0.32 mg/L) 

1.7 
(8 mg/L) 

1.7 
(0.32 mg/L)

1.5 
(1.6 mg/L) 

1.9 
(1.6 mg/L) 

MT 2.5 
(8mg/L) 

1.5 
(1.6 mg/L) 

2.6 
(0.32 mg/L) 

0.7 
(40 mg/L) ns ns 2.3 

(1.6 mg/L) 

PCNA 1.6 
(8 mg/L) 

1.2 
(0.32 mg/L) 

1.23 
(0.32 mg/L) 

1.4 
(8 mg/L) 

1.5 
(0.32 mg/L)

1.3 
(1.6 mg/L) 

1.5 
(0.32 mg/L)

SOD 0.7 
(8 mg/L) 

3.6 
(1.6 mg/L) 

0.6 
(0.32 mg/L) 

0.7 
(8 mg/L) 

0.7 
(0.06 mg/L)

1.3 
(8 mg/L) 

1.3 
(0.32 mg/L)

SPARC ns ns 1.3 
(0.32 mg/L) ns 0.75 

(0.06 mg/L) 
1.4 

(8 mg/L) 
1.3 

(1.6 mg/L) 

HSI 0.85 
(8 mg/L) ns 0.75 

(0.32 mg/L) ns ns ns ns 

CF 1.2 
(40 mg/L) 

1.15 
(1.6 mg/L) 

1.2 
(0.06 mg/L) 

1.2 
(40 mg/L) ns 1.2 

(8 mg/L) ns 

Trout 
mortality2 > 40 mg/L 8 mg/L 1.6 mg/L > 40 mg/L 0.7 mg/L 40 mg/L 8 mg/L 

1: The data represent the fold induction/repression at the lowest exposure concentration (mg/L); ns: not significant. 
Response factors between 0.85 and 1.15 were usually not statistically significant. 
2: Concentration at which at least 20% mortality was observed. 
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pretreatment with Gd(III) had no effect on the 
toxicity of CdCl2. These studies revealed that 
cytochrome P450 activity could be either 
increased or decreased depending on the exposure 
and duration of concentration and the type of RE. 
Spectral analysis seems to cope more easily with 
these “opposite” effects, as it highlights the oscillatory 
nature of the responses rather than the intensity of 
either the increase or the decrease of the biomarker 
that could occur depending on exposure time and 
concentration. It is not surprising that hepatic 
detoxification gene transcripts (CYP1A1, GST 
and MT) were predictive of changes in the HSI, 
since inducers of cytochrome P450 and phase 
GST were recognized to increase the HSI in some 
cases [18]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
were drastically reduced in the rough endoplasmic 
reticulum [14]. In another study, a single dose of 
a light RE, praseodymium (5 mg/kg), reduced 
the cytochrome P450-mediated metabolism of 
hexobarbital and zoxazolamine in rats [15]. 
However, Ce was shown to increase the activity 
of coumarin 7-hydroxylase at lower doses (0.5 
and 1 mg/kg) in DBA/2 mice, and at higher 
concentrations morphological changes occurred in 
the liver which were associated with decreased 
coumarin 7-hydroxylase activity [16]. Lastly, similar 
effects were observed in rats exposed to Gd: total 
cytochrome P450 levels were significantly reduced 
[17]. Interestingly, pretreatment of rats with Gd(III) 
reduced the toxicity of CCl4, which requires 
activation by cytochrome P450. However, 
 

Table 3. Multiple regression analysis of gene expression and toxicity effects. 

Endpoints Gene expression  
(response factor) 

Gene expression 
(Fourier transformed) 

Resonance at 
frequency 0.1 

Fish mortality 
(LC20)1 

Group 1 (GADD, HSP70, 
PCNA, SOD):  r = 0.72;  
p = 0.04 
Group 2 (MT, GST, CYP): 
r = 0.7; p = 0.02 
Group 3 (GLUD, SPARC, 
CAT): r = 0.45; p = 0.34 
Group 4 (CYP, GLUD, 
SOD, CAT): r = 0.54;  
p = 0.12 

Group 1 (GADD, HSP70, 
PCNA, SOD): r = 0.5;  
p > 0.1 
Group 2 (MT, GST, CYP):  
r = 0.7; p = 0.02  
Group 3 (GLUD, SPARC, 
CAT): r = 0.95; p < 0.0001 
Group 4 Best prediction 
(CYP, GLUD, SOD, CAT): 
r = 0.98; p < 0.0001       

r = 0.63 
p = 0.02 

Hepatic somatic index Group 1  (GADD, HSP70, 
PCNA, SOD): r = 0.87;  
p = 0.001 
Group 2 (MT, GST, CYP): 
r = 0.85; p < 0.001 
Group 3 (GLUD, SPARC, 
CAT): r = 0.58; p < 0.01 

Group 1 (GADD, HSP70, 
PCNA, SOD):  r = 0.91;  
p = 0.001 
Group 2 (MT, GST, CYP): 
r = 0.96; p < 0.0001  
Group 3 (GLUD, SPARC, 
CAT): r = 0.52; p < 0.01  

r = 0.82 
p < 0.01 

Fish weight/shell length Group 1 (GADD, HSP70, 
PCNA, SOD): r = 0.79;  
p < 0.001 
Group 2 (MT, GST, CYP): 
r = 0.44; p = 0.36 
Group 3 (GLUD, SPARC, 
CAT): r = 0.66; p < 0.001 

Group 1 (GADD, HSP70, 
PCNA, SOD): r = 0.90  
p < 0.001 
Group 2 (MT, GST, CYP): 
r = 0.96 p < 0.0001 
Group 3 (GLUD, SPARC, 
CAT): r = 0.5; p < 0.01 

r = 0.8 
p < 0.01 

1: For fish mortality data, the concentration that killed at least 20% of the fish was reported.  
In the case for toxicity at concentrations > 40 mg/L, a default concentration of 200 mg/L was used for 
regression analysis. The strongest multiple regression coefficients are highlighted in bold. 
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eleven pharmaceutical mixtures was compared 
with the individual toxicity of each pharmaceutical 
compound. The concentrations that produced toxicity 
of the pharmaceuticals in the mixture were 2 to 3 
orders of magnitude lower than the concentrations 
of the individual pharmaceutical compounds 
administered alone to the hydra. By considering the 
wave-like nature of molecular responses (biomarkers), 
we can quantify effects based on resonance and/or 
emergence. Resonance occurs when signals are at 
the same frequency (i.e., synchronized): the individual 
signals are integrated and enhance the net 
amplitude of the biochemical changes to the point 
that they cause damage to the system. This allows 
for emergence, where an effect could be observed 
with a mixture of xenobiotics but not with the 
individual components. In general, the toxicity of 
individual compounds is additive, but spectral 
analysis introduces the notion that the biochemical 
changes caused by the individual components of 
the mixture must occur at the same frequency in 
order to make it possible to observe additivity or 
integration of “non-detectable” effects. Moreover, 
the frequency at which the effects are observed was 
always lower than the natural/biological variation 
(the fundamental frequency) of the biomarker. In 
addition, the wave-like properties of biochemical 
changes are also suitable for modelling the phenomena 
of circadian rhythms and synchronization in 
biochemical changes. Synchronization is the process 
in which biochemical changes occur in phase with 
other biochemical changes. It was observed that 
cells in population have the ability to synchronize 
their metabolic pathways (e.g., glycolysis) with each 
other, enabling the global functioning of population 
(yeast cells) or tissues such as the heart [23]. The 
intermediary metabolite acetaldehyde has been 
suggested as synchronization agent for glycolysis in 
dense populations of cells [24]. However, more 
research will be needed to determine whether 
these wave-like properties could be generalized 
further in molecular toxicology. The present study 
revealed that the Pk metric (an indicator of the 
variance of the changes) identified genes or 
pathways that were corroborated by other studies 
and highly predictive (r > 0.90) of effects at 
higher levels of biological organization such as 
mortality, HSI and fish condition. The resonance 
metric (sum of Pk values of signals occurring at 
 

Gene expression of GADD45, which is involved 
in cell growth-arrested DNA repair activity, was 
overexpressed for nearly all the tested REs. The 
exception was Y, which downregulated GADD45. 
Y is genotoxic in human lymphocytes, as determined 
by the micronucleus test [19], and it triggers DNA 
breaks, leading to S phase arrest and apoptosis [20]. 
La(III) and Ce(IV) ions were shown to mediate 
DNA hydrolysis, making them efficient artificial 
nucleases [21]. GADD45 expression was included 
in group 1 genes, which were very good predictors 
of HSI and fish condition. GADD45 gene expression 
data for Ce (Figure 3) revealed that gene expression 
was induced at two frequencies, 0.1 and 0.25, and 
that the frequency 0.1 contributed to the resonance 
value, which was significantly associated with fish 
mortality concentrations, HSI and fish condition. 
Spectral analysis using Fourier transformation 
represents another data transformation approach 
based on the principle that molecular responses 
behave as waves in space and time, space being the 
exposure concentration range in the present context. 
It is reasonable to assume that a biochemical/
physiological response could not always respond 
proportionally to the exposure concentration in 
a given timeframe, because, as the exposure 
concentration increases, the biochemical response 
could manifest earlier, making it possible to find 
non-significant or even decreased changes compared 
to the control at higher concentrations. Moreover, 
although biochemical pathways are statistically 
analyzed as independent variables, biochemical 
changes are expected to have many inter-
dependencies at the physiological level (glycolysis 
is influenced by gluconeogenesis; cellular respiration 
could be impacted by oxidative stress or xenobiotic 
metabolism, etc.). The mechanism of action of 
xenobiotics is not always specific (i.e., receptor-
mediated), and many pleiotropic interactions could 
occur, leading to unsuspected effects in biochemical 
changes. This highlights the possibility that when 
some xenobiotics are present alone they do not 
show toxicity, but when they are present in mixtures, 
toxicity is observed even if the concentration of 
the xenobiotic in the mixture is lower than that of 
the xenobiotic alone. One such example was 
observed in hydra exposed to a mixture of eleven 
pharmaceuticals usually found in municipal 
wastewater [22]. The combined toxicity of the 
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the same frequency) was also significantly correlated 
with the above endpoints, suggesting that some 
effects arise from the process of resonance. Again, 
more research will be required to further validate 
this statement.  
 
CONCLUSION 
In conclusion, toxic responses at the molecular level 
appeared cyclic in nature and transformation of 
the responses based on Fourier analysis could 
provide further insights on the toxic properties of 
biochemical changes in cells. 
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