
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Milk-Way algorithm for ligand-based virtual screening: 
CDK2 case study 

ABSTRACT 
Ligand-based screening of large molecular 
databases can help reduce costs with experiments 
by filtering and ranking promising compounds in 
an initial stage of the drug developing process. 
However, some ligand-based methods can be 
ineffective when presented with a high-dimensional 
number of attributes extracted from an extensive 
dataset of compounds. Herein, we propose a drug-
mining algorithm that can be used to screen 
ligands and repurpose known drugs, from any 
dataset for any target. The Milk-Way algorithm 
combines mathematical and regression methods to 
select promising compounds from a high-dimensional 
dataset without the use of massive computational 
power. We carried out a prospective screening 
targeting cyclin-dependent kinase two (CDK2), an 
attractive target for therapeutics designed to arrest 
or recover control of the cell cycle. The combined 
use of the algorithm metrics and molecular 
docking suggested five promising drugs to be 
repositioned (Pramocaine, Prochlorperazine, 
Trifluoperazine, Methionine, and Pergolide), in 
which three were already mentioned as possible 
inhibitors of related diseases in the literature.  
 
KEYWORDS: algorithm, drug discovery, drug 
repurposing, ligand-based virtual screening, logistic 
regression, machine learning, development.  

1. INTRODUCTION 
We present a new algorithm to screen novel 
compounds using CDK2 as the target. This is an 
enzyme that phosphorylates many proteins involved 
in cell cycle progression, DNA replication, 
histone synthesis, centrosome duplication, among 
other processes [1, 2]. Because of these functions, 
CDK2 represents an attractive target for 
therapeutics designed to arrest or recover control 
of the cell cycle in dividing cells [3], and since the 
enzyme is not essential for the cell cycle, its 
toxicity is not severe [4]. Despite the importance 
of the CDK2 protein, not many commercial drugs 
act against it. Thus, we investigated the use of 
drug repurposing as an aid to CDK2 drug 
development. Drug repurposing is the strategy of 
discovering new uses or conditions for approved 
drugs to not only assess the effects of the drug on 
a new target but also to reduce the cost of 
developing a new drug. 
Computational approaches, such as virtual screening 
(VS), have emerged as alternatives to screen large 
libraries of small molecules in a cost-efficient 
manner. Although VS approaches do not substitute 
experimental assays, they can speed up and 
rationalize the process of drug discovery, enriching 
the number of hits since it can downsize the 
number of candidates to be tested [5, 6]. In 
structure-based virtual screening (SBVS), the 
three-dimensional structure of the target is known, 
from x-ray crystallographic, NMR, or computational
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modeling [7, 8]. Recently, cryo-EM (cryo-electron 
microscopy) was introduced as a powerful three-
dimensional source and is starting to make an 
impact in drug discovery [9]. SBVS usually 
involves the molecular docking methodology, 
which places and ranks the compounds in the 
binding site according to an algorithm that predicts 
their possible binding affinity [10].  
In the absence of three-dimensional structures of 
the targets, the molecular and chemical properties 
of known actives and tested compounds are 
gathered to create models of their binding using 
ligand-based virtual screening (LBVS) [11]. Some 
LBVS methodologies can assume that one or 
more actives share a binding mode. Thus, the 
screening will be done as a similarity or matching 
search to select potential new binders with similar 
chemical features to the known ones [12]. Chemical 
compounds to compose screening libraries are 
available as a free resource of bioactivity data for 
small molecules in various databases such as 
ChEBI [13], ZINC [14], PubChem [15], DrugBank 
[16], IUPHAR-DB [17], and KEGG [18]. 
Alternatively, in-house compound datasets can 
also be created from previously tested compounds 
and analogs. A powerful LBVS method is the 
Quantitative structure-activity relationship (QSAR). 
QSAR models starts by calculating chemical 
descriptors collected from compounds found in 
databases or the literature. These descriptors are 
correlated with biological properties using a 
variety of machine learning techniques [5, 19]. 
After created and validated, QSAR models are 
applied to predict novel compounds in virtual 
screening campaigns. Although QSAR is effective 
and with the use of SBVS methods also target 
orientated, it is still a time and computationally 
demanding method [5]. 
For many LBVS methods, in the model’s 
generation step, known actives can be employed 
as training data in classification methods. These 
methods use this information to separate a database 
of compounds with unknown activity into 
predicted actives and inactives [20]. Classification 
methods are usually machine learning approaches 
that build models, such as decision trees [21, 22], 
neural networks [23, 24], and support vector 
machines [25], and can perform particularly well 
in enriching actives [20]. Established algorithms 
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for data mining (Naive Bayes, SMO, Random 
Forrest, J48) are also used to classify chemical 
compounds [26].  
However, classification methods can demand 
extensive knowledge over the many methodologies 
and need high computing power. Furthermore, 
these methods might not perform well when 
subjected to imbalanced or high-dimensional data, 
i.e., when all features describing the chemical 
properties of the compounds are used. These 
problems can lead to an inadequate exploration of 
the ligands, and lack of accurate results, essential 
to screening [27-29]. Therefore, the proposition of 
an improved in silico approach to classified 
chemical compounds is a relevant issue. 
In this paper, we suggest the Milk-Way algorithm 
(a WAY of Mathematical Interpretation of the 
Logistic ranK), a robust combination of well-
known techniques of data-mining, logistic regression, 
vector space representation, and linear algebra to 
contribute to the ligand-based approaches to 
rational drug design. Our algorithm does not 
demand a complex computational infrastructure to 
select potential hits in a screening campaign. A 
first step in the algorithm is to collect a library of 
actives and inactives compound structures to be 
designated through descriptors (Fragment Pair/ 
Pharmacophore). Then, a model is created, 
validated, and trained to classify potential hits. 
The model enables us to calculate and project the 
probability of each ligand (P(x), where x is the 
ligand) outcome, which is used to distinguish 
possible high performing ligands. An application 
of repurposing commercially available drugs with 
the Milk-Way algorithm was conducted using the 
cyclin-dependent kinase 2 (CDK2) as a target to 
exemplify the algorithm’s predictive power. CDK 
is a family of serine/threonine protein kinases 
which act as critical regulatory element in cell 
cycle progression and development. As the name 
reveals, those are enzymes that catalyze the 
transfer of a phosphate from ATP to a protein 
substrate, more precisely on a serine or threonine 
amino acid residue [30].  
 
2. MATERIALS AND METHODS  
All the data were processed in MATLAB R2017a, 
using a laptop with 4 GB RAM, 320 GB hard 
drive, and a processor Intel Core i5 2.53 GHz. 
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2.2.1. Singular value decomposition 
This step in our screening algorithm helps reducing 
the noise and retrieve latent patterns of the input 
matrix. A technique for information retrieval, 
using a linear algebra approach, is the singular 
value decomposition (SVD). This rank reduction 
procedure is closely related to matrix factorization, 
data compression, dimension reduction, and 
feature selection/extraction [37]. When SVD is 
utilized, it allows the matrix to be represented as a 
set of derived matrices, which can have different 
depictions of data without loss in their semantic 
meaning [37, 38]. A matrix submitted to the SVD 
method can be represented as: 

A = UΣVT, 

where A is a matrix of real numbers or complex 
numbers composed of m rows by n columns. 
However, now, m represents the attributes and n, 
the entities. The U is an orthonormal m x m matrix 
and the eigenvectors of AAT; the Σ is a m x n 
matrix, known as the diagonal matrix, with real 
and non-negative numbers and contain the 
singular values of A. The matrix VT is known as a 
conjugate transpose, a n x n unit matrix. As the 
diagonal values of Σ are ordered in descending 
order, Σ is a direct function of matrix A and 
distinguishes the singular values of this matrix. 
This sorting is from the most meaningful to the 
least significant values. Whereas from a subset of 
singular values of size k < m, we can obtain Ak, 
the approximate matrix of A, with k-dimensional: 

Ak = UkΣkVk
T 

The approximation will be related to how many 
singular eigenvalues are used [37, 39, 40]. This 
strategy enables an information extraction based 
on less data, and the data analysis execution time 
does not increase exponentially when the matrix 
size is increased. A data set represented by a 
smaller number of singular values than the 
original full-size dataset tends to cluster data that 
would not be clustered together if the original one 
was used. Therefore, the derived representation, 
which captures associations, is used for retrieval 
[38-41]. The representation in the reduced space 
depiction is economical, in the sense that N 
original index features have been replaced by the 
k < M best-approximated surrogates. It is essential 
for the method that the derived k-dimensional

The Milk-Way methodology runs in the Windows 
operating systems.  

2.1. Data collection 
The starting point, in our algorithm, is the 
construction of a matrix, whose entities are the 
ligands (columns) and their attributes (lines). All 
the attributes were generated through the PowerMV 
program [31]. The attributes are binary descriptors 
that define both active and inactive ligands. We 
have chosen fragment pair (735 features) and 
pharmacophore fingerprints (147 features) as 
molecular features [32-34]. For fragment-based 
descriptors, PowerMV replaces atom types with 
groups of atoms and counts the shortest path 
between them. For example, two phenyl rings, 
which are separated by two bonds, are expressed 
as AR_02_AR. In total 14 groups of atoms are 
considered. Whereas pharmacophore fingerprints 
are built based on bioisosteric principles [35], i.e., 
two atoms (or groups), predicted to have similar 
biological effect, are classified as the same type. 
For example, the disulfide (-S-) is often used to 
replace ester group (-O-); hence we assign these 
two groups to the same type. Therefore, only six 
classes are considered in the pharmacophore-
based descriptors. However, it is possible to use 
any database and attributes to build the input 
matrix, such as molecular, physicochemical, 
topological, structural, pharmacological descriptors, 
or any property of the ligands. A binary representation 
is also not obligatory. The only imperative premise 
is a representation of ligands. To the algorithm, 
this is the most critical step since the projection of 
the ligand into the vector space depends on that, 
to calculate the probability. 
Literature data of known inhibitors were extracted 
from two databases, PubChem [36] and DrugBank 
[16], depending on the case study. In the CDK2 
study case, we used in the training set the only 
approved drug to CDK2 to compose the actives 
and 152 compounds as decoys. The test set 
included all 2389 commercial drugs according to 
the DrugBank [16], at the time the search was 
performed. 

2.2. The screening algorithm 
The algorithm consists of several consecutive 
steps: (i) SVD; (ii) Ad-hoc choice; (iii) Modified 
Logistic Regression and, (iv) Stratified feature 
selection through the alpha values.  
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data is represented by matrix A, with m rows and 
n columns; so the value of each position am,n 
represents the attribute n of the ligand m. Here, 
the matrix is the transpose of the previous SVD-
treated matrix. We will omit the indication of row 
m in the elements of vector x, that is x = (x1, 
x2,…,xn). Associated with each row m, there is 
Pi(x) = 0/1 that informs the activity of the ligand. 
We observed that when 1 1 1ni

xe α α ++∑  drops to zero, 
Pi (x) also goes to zero. On the other hand, if  

1 1 1ni
xe α α ++∑  tends to infinity, Pi (x) approximates 

one. Viewing Pi (x) as the probability, the odds Ci 
(x) is given by: 
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To implement the method, we use Ĉi(x) ≈ Ci(x) = 
(0.99999 / (1-0.99999)) instead of Ci (x) when 
the odds are related to Pi(x) = 1. When Pi(x) = 0, 
we consider Ĉi(x) ≈ Ci(x) = (0.00001 / (1-
0.00001)). 
Taking the logarithm on both sides of (equation 4) 
we have: 
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The system (equation 5) is a linear algebraic 
model created to determine α:  

bi = α0 + α1x1 + α2x2 + … + αnxn 

where i = 1, 2, …, m.  
Let ē = (1, …, 1)T be a vector of m ones and b = 
(b1, b2,…, bm)T. The system of linear equations 
(equation 6) may be represented by: 

Bα = b, with B = [ē A] 

The solution of equation 7 is given by the solution 
of a least square problem but, in our case 
(equation 7), it has an infinite number of 
solutions, since n + 1 >> m. It is usual to 
circumvent this difficulty by suppressing the 
model and keeping only a small subset of the n 
attributes. This procedure resembles the feature 
selection in data mining, an open problem 
research area [35].  

factor space does not reconstruct the original term 
space correctly. The beauty of SVD, however, 
is that it allows a simple strategy for optimal 
approximate fit using smaller matrices. Everitt 
and Dunn [42] proposed an alternative approach 
where singular values whose relative variance is 
less than 0.7/n, where n is the number of 
individuals in the matrix, must be ignored. If the 
singular values in Σ, are ordered by size, the first 
and largest k may be kept and the remaining 
smaller ones set to zero [43].  

2.2.2. Ad-hoc choice 
After determining the number of singular values 
of our input matrix of molecular features of active 
and inactive compounds, we define the number of 
singular values as a criterion of the number of 
individuals to collect. Otherwise, we would have 
an infinitive of possibilities as well as combinations. 
The model was constructed for each query (ligand 
to predict the P(x)) using the closest active and 
inactive ligands. The main objective of this 
particular strategy is to create a homogeneous and 
specific system through the choice of closely 
spaced individuals. We chose Hamming distance, 
on account of better adjusting the matrix that is 
composed of zeros and ones. This distance can be 
defined as the number of positions in which a 
codeword differs between two code words [44], 
or, in other words, it is the minimum number of 
errors that could have transformed one string into 
the other. 

2.2.3. Modified logistic regression 
The regression method is helpful to any data 
analysis concerned with describing the relationship 
between a response variable and one or more 
explanatory variables. The logistic regression 
analysis proposes the classification of individuals 
in different categories, with an accurate estimation 
for that possibility [45]. The logistic regression 
equation consists of assigning values to α = (α0, 
α1,…,αn) to fit the logit function (3)  

1 1 1

1 1 1
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such that P(x) = 0/1 associated with the activity of 
each ligand (inactive or active, respectively). The
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3. RESULTS 

3.1. Data collection, model building, and testing 
of the Milk-Way algorithm  
Milk-Way method is divided into five steps: 
(A) selection of active and inactive ligands; 
(B) fingerprint construction, where ligand properties 
are collected and stored in a matrix; (C) noise 
reduction using singular value decomposition 
(SVD); (D) model construction based on ad hoc 
selection; and (E) prediction using a modified 
logistic regression, which selects ligands based on 
high values of P(x) (Figure 1). 
The Milk-Way algorithm requires an initial input 
matrix of individuals to be capable of building a 
classification model. In this matrix, two sets of 
compounds can be found — compounds with 
experimentally tested activity towards the desired 
target and compounds without any evident activity. 
The latter set can be formed by confirmed 
inactives or artificially created compounds, the 
so-called decoys. 
Interestingly, when the weights of the attributes 
(αi values in equation 3) were analyzed, we could 
understand the impact that each feature had on 
the classification into active or inactive. Since 
we have a significant number of features, we 
expected that the highest α values corresponded to 
active compounds. Moreover, the inverse is also 
true – the lowest α values correspond to inactive 
compounds. 

3.2. Application of the Milk-Way algorithm 
For the construction of the model, we selected the 
only commercial drug that acts against CDK2 
(Bosutinib [15]) as the active entity. Decoys were 
generated from DUD-E [50] based on Bosutinib 
and two commercialized drugs for CDK4 and 
CDK6 [16], Ribociclib, and Palbociclib. CDK4 
and CDK6 are homologous proteins to CDK2 [1] 
(Supplementary material Table S1). We put them 
with the inactives to distinguish the effect of 
the homology between the enzymes. The same 
molecular features (Fragment Pair/Pharmacophore 
fingerprints) previously described were also used 
as attributes (Supplementary material Table S2).  
The screening was performed using commercialized 
drugs retrieved from the DrugBank [15]. The 
drugs which obtain a probability (P(x)) of 0.98 or 

We approximate a solution of the combinatorial 
problem related to the feature selection solving 
the following: 

α = argument that minimize f (α) 

where f (α) = αTα + (Bα - b)T * (Bα - b) 

The solution of equation (8) is a convex 
unconstrained optimization problem [46]; after 
applying the optimality conditions, it can be 
shown that the optimal solution α* is such that it 
verifies the following system of linear equations 

(I + BTB) α = BTb, 

where I is an identity matrix of dimension n. We 
point out that in Golub [47], an identity matrix to 
solve the rank deficiency in systems of linear 
equations was used. One should note that the 
identity matrix in equation 9 does not allow the 
rank to become deficient.  
It was observed that the optimal solution α* of 
(equation 8) is unique. So, given a query q = (q1, 
q2,…, qn), the probability of q be an active ligand, 
is given by 

P(q) = g(q) / (1 + g(q)), 

where, g(q) = exp ([1 q] α). 

On this step, the regression gives us a probability 
associated with each ligand. We would like to 
highlight the fact that modification in the logit 
function allows us to use more features than 
ligands. 

2.3. Molecular docking 
A docking protocol with DOCK6 [48] was 
performed to establish the use of the generated 
docking score as the binding energy. DOCK6 
provides multiple scoring functions, from force-
field-based to pharmacophore-based, and the 
possibility of combining them. Therefore, in our 
case, it was useful to incorporate chemical features 
of known inhibitors and the binding sites to the 
docking of the selected compounds. Bosutinib 
was also subject to docking simulations since no 
crystallographic structure of the complex CDK2-
Boustinib is available. The docking poses of the 
selected drugs were analyzed with the help of the 
Discovery Studio Visualizer [49] that showed 
possible interactions with CDK2 active site. 

(8)

(9)

(10)
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We analyzed these drugs through molecular 
docking to probe a possible complementarity 
between the CDK2 structure and them. Molecular 
docking provided a rank through the chosen

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
higher were selected. In total, five drugs 
were selected: pramocaine, prochlorperazine, 
trifluoperazine, methionine and pergolide 
(Supplementary material Table S3). 

Figure 1. Workflow of the Milk-Way algorithm. It is divided into five steps: (A) selection of active 
and inactive ligands; (B) fingerprint construction; (C) noise reduction; (D) model construction; and 
(E) prediction. The input of the algorithm is a matrix of ligands to a specific target describe through 
descriptors. After the Singular Value Decomposition, the training model is ready either to calculate 
the probability of new binders or for repositioning marketed drugs by ad hoc selection. The output is 
the suggestion of new compounds to be used as ligands to the target. 
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docking binding mode of this compound presented 
the same interacted residues as the crystal 
inhibitor (ILE 10, VAL 18, LYS 33, LEU 72, 
GLN 120, and LEU 123). The presence of these 
interactions from known inhibitors might indicate 
a possible binding of the predicted compounds.  
 
4. DISCUSSION 
Machine learning approaches are robust 
methodologies capable of screening drug leads 
from a dataset of many compounds with reasonable 
accuracy in a faster and cheaper manner than 
experimental testing. Most methods act as a 
classifier, separating the compounds into actives 
and inactives. To accomplish this classification, a 
model is created and validated through training 
sets using known actives to a specific target [12]. 
Milk-Way provides a novel and alternative approach 
to machine learning using a combination of data-
mining techniques.  
An interesting characteristic of Milk-Way is the 
usefulness of alpha values (equation 3) to perform 
the stratified feature selection. The positive 
values of the components αi of α contribute to 
approximate P(α) to 1, and the negative values 
approximate P(α) to 0. Absolute values of αi close 
to zero don’t have significant impact in the
 
 

scoring function, prioritizing three compounds 
with predicted high affinity besides bosutinib 
(-26.17 kcal/mol): pramocaine (-30.83 kcal/mol), 
trifluoperazine (-23.67 kcal/mol), and 
prochlorperazine (-17.87 kcal/mol) (Supplementary 
material Table S4). Interestingly, pramocaine 
[51], prochlorperazine [52], and trifluoperazine  
[52, 53] are described in the literature to act on 
CDK2-related diseases such as Glioblastoma, 
breast cancer, and other tumor effects (Supplementary 
material Table S3). 
The binding modes from docking showed that all 
compounds fitted very well in the CDK2 active 
site (Supplementary material Table S5) and 
interacted with key residues in the active site 
(Supplementary material Table S6). For instance, 
bosutinib binding mode was complementary to 
the active site (Figure 2a), and it achieved 
interactions with the same residues as the inhibitor 
present in the crystal structure, such as hydrogen 
bond interaction with LYS 33, hydrophobic 
interactions with VAL 18 and GLN 120 (Figure 
2b). Similar behavior was observed with 
molecular docking highest-ranked compound, 
pramocaine (Figure 3a). Although pramocaine 
showed less interaction than bosutinib in the 
CDK2 binding site (Figure 3b), the molecular 
 
 

Figure 2. Bosutinib molecular docking binding mode. a) Bosutinib in the active site of CDK2 with the interacting 
residues and hydrogen bond interactions. b) 2D representation of the interactions between Bosutinib and the active 
site of CDK2. 
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by the Milk-Way to repurpose, have already been 
described in the literature to act on CDK2-related 
diseases (Supplementary material Table S3) [51-
53]. 
 
5. CONCLUSIONS 
The development of new drugs takes about 
fourteen years, and the cost ranges are estimated 
at around 1.0 billion USD [54]. With the HTS 
method, it is possible to screen millions of 
compounds against a chosen target experimentally. 
However, it is an expensive process, and therefore 
lower-cost alternatives capable of sorting promising 
compounds from several other ones are sought 
out. These help to decrease the number of ligands 
to be tested in a possible experimental phase.  
Our holistic approach can classify ligands with the 
support of the selected case studies. The use of 
literature data and datasets were appropriate for 
testing the algorithm and measuring the results. 
It is essential to notice, the cases investigated 
throughout the paper are unrelated to each other, 
demonstrating a practical way to prove the 
efficiency of the proposed algorithm for LBVS. 
Nevertheless, it is essential to highlight the 
acceptance of a higher number of attributes 
(ligands’ features) than entities (ligands), without 

 

 

 

 

 

 

 

 

 

computation of P(α). The modified logistic 
regression can identify the highest alpha values, 
which carried critical molecular features present 
on active compounds (Supplementary material 
Table S2). Low alpha values were usually observed 
in inactive compounds. Therefore, one advantage 
of the Milk-Way algorithm is that more features 
than compounds can be processed since the rank 
of the matrix is the one used in the calculations, 
not the entire matrix. 
We performed a simulation study that showed the 
combination of our method to other in silico 
techniques. Since our algorithm is ligand-based, 
the ligands selected can benefit from molecular 
docking, a structure-based approach, when a 
structure of the target is known. The docking 
scores (Supplementary material Table S4) and 
interaction analysis can provide a better atomistic 
understanding of a possible inhibition of the 
CDK2 enzyme by the selected compounds 
(Supplementary material Tables S5 and S6). For 
instance, the highest scored compound pramocaine 
displayed all the interactions presented in another 
known CDK2 inhibitor (ILE 10, VAL 18, LYS 
33, LEU 72, GLN 120, and LEU 123), indicating 
a possible strong binding of this compound. 
Furthermore, three of the five selected ligands 
(Pramocaine, Prochlorperazine, and Trifluoperazine)

Figure 3. Pramocaine molecular docking binding mode. a) Pramocaine in the active site of CDK2 with the 
interacting residues and hydrogen bond interactions. b) 2D representation of the interactions between Pramocaine 
and the active site of CDK2. 
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LBVS :  ligand-based virtual screening 
RTI :  reverse transcriptase inhibitors 
SBVS :  structure-based virtual screening 
 
SUPPLEMENTARY MATERIAL 

CDK2 model 

Data collection 
The matrix was composed of drugs described 
through zeros and ones, done by the Power MV 
[31]. The descriptors generated were: 735 fragment 
pair and 147 Pharmacophore fingerprints [32-34]. 
They are a topological representation of a 
chemical structure of ligands, some of which have 
already been used in data mining [26]. This model 
was based on the only drug commercialized to 
CDK2, bosutinib (DB06616), used for chronic 
myelogenous leukemia [56]. The inactives were 
made by generating 50 decoys, from DUD-E [50] 
of this drug and using two commercialized 
drugs for CDK4/6 and their respective decoys. 
Ribociclib (DB11730) and palbociclib (DB09073) 
inhibit tumor growth across a diversity of 
retinoblastoma cancers (Rb+) [57, 58]. We assign 
drugs for CDK4/6 in the group of inactive ligands 
for the sake of guaranteeing the specificity for 
CDK2, since the fact that they belonged to the 
same family could generate false positives, due to 
their homology. It has already been proven that 
CDK2 is structurally and functionally related to 
CDK1. Also, CDK2 has a considerably broader 
substrate profile than CDK4 and CDK6 [1].  
As we are working with drug repositioning, the 
matrix of queries consisted of drugs already 
marketed according to the DrugBank database 
[16]. Each ligand was described through the same 
882 descriptors of the model. 

Singular value decomposition 
The singular value decomposition (SVD) helps 
to reduce the dimension of the matrix. All the 
eigenvalues were chosen based on the Everitt et al. 
criteria [42].  

Ad-hoc choice 
It is also essential to analyze the P(x) of the drug 
which acts in CDK4/6, inferring about the 
specificity of the model, in the family of CDK, 
due to the fact of homology between then. 
 
 

a problem of rank deficiency. This added factor is 
opposed to the classical logistic regression in 
which it is obligatorily to have more entities than 
attributes.  
The proposed mathematical modulation does not 
require a massive infra-structure apparatus to be 
performed and constitutes a good strategy for the 
selection of promising compounds. The Milk-Way 
algorithm demonstrated excellent performance, and 
with less computational infrastructure. For a more 
in-depth and broader study of this algorithm, we 
are already applying it to other targets and other 
data-sets. Since there is an attempt to continually 
improve the efficiency of computational processes 
for the development of new and repositioning 
drugs, we proposed a robust approach that 
provides a general classifier to separate actives 
from inactives present in a dataset of ligands for 
any data-driven LBVS. 
The Milk-Way algorithm already has an 
associated patent BR 10 2019 027703 3 [55]. 
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known. Docking begins by sampling different
orientations and conformations of the ligand 
within the target binding site [59, 60]. Afterward, 
the best positions, the so-called pose, for each 
ligand are determined by ranking them according 
to a scoring function [61]. With this strategy, we 
can predict a possible affinity between ligand and 
target. We chose DOCK6.8 [48] since it provides 
multiple scoring functions, from force-field based 
to pharmacophore-based, and the possibility of 
combining them.  
Therefore, in our case it was useful to incorporate 
chemical features of known inhibitors and the 
binding sites to the docking of the selected 
compounds. We chose a protocol that calculates
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alpha values analysis 
With the system of equations represented in 
equation 3, the alpha value translates the impact 
that each feature has on the categorization of the 
active or inactive ligand. To get an analysis of the 
alpha values and how the validation model is 
categorizing, we compared the 1% of the highest 
alphas of the model. By the logic and rigor of the 
equation, it is expected that the higher alpha 
values belong to the active reference active bosutinib. 

Molecular docking protocol  
Molecular docking can provide a better 
understanding of the interactions between a target
macromolecule when the target structure is 
 
 

Table S1. Number of ligands and features of the training matrix CDK2 and the result of 
singular value decomposition. 

  882* 

Active 1 
Original matrix 

Inactive 152 

Sum Sr** 0.7005 
SVD 

Eigenvalue 61 

Active 1 
Each training model 

Inactive 152 

*number of features (fragment pair and Pharmacophore fingerprints). 
**Sr = (diagonal(S)/sum(S)) [42]. 

Table S2. The 1% features with the highest alpha value. 

Alpha features 

“ARC_06_-O-” 

“HY1_03_HY2” 

“POS_04_POS” 

“POS_04_POS” 

“HY1_04_HY1” 

“ARC_04_-O-” 

“POS_06_-O-” 

“HAL_05_HY2” 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pharmacophore overlap in the score component 
would be useful.  
To perform the docking of the compounds chosen 
by the Milk-Way algorithm, we chose the 2R3Q 
[62] structures, since it achieved good results in 
pose reproduction and cross-docking experiments 
(data not showed). We used its native ligand as 
reference for the MGE and PHS scoring. 
OpenBabel [63] was used to convert the ligands 
from SMILES to the mol2 format. Geometry 
optimization was performed for all ligands using 
GAMESS [64], while AM1-BCC partial charges 
were assigned using AMBER’s antechamber [65].

grid parameters to every residue interacting with 
the reference, the so-called Multigrid energy score 
(MGE). The sum of the interactions in each grid 
equals the interaction of a single grid representing 
the entire target.  
Since DOCK6.8 allows the combinations of score 
functions, we also included the Pharmacophore 
Matching Similarity (PHS) score combined with 
the MGE. PHS is a scoring function that calculates 
the level of pharmacophore overlap between a 
reference molecule and a candidate molecule in 
three-dimensional space. Since MGE already uses 
a reference molecule, we found that including its
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Table S3. The references of the selected ligands (P(x) > = 0.98). 

CID Name P(x) Citation Reference 

DB09345 Pramocaine 0.9970 

Pramocaine induced 
expression changes in 
‘Signaling Pathways in 

Glioblastoma’ 

 [51] 

DB00433 Prochlorperazine 0.9919 Drugs with potential 
antitumor effects  [52] 

DB00831 Trifluoperazine 0.9875 

Trifluoperazine might be a 
potential available drug 

for treating triple-negative 
breast cancer with brain 

metastasis, which urgently 
needs novel treatment 

options 

 [52, 53] 

DB00134 Methionine 0.9830 - - 

DB01186 Pergolide 0.9813 - - 

Table S4. Values of energy using DOCK scoring MGE + PHS. 

Name: Bosutinib Pramocaine Prochlorperazine Trifluoperazine Methionine Pergolide

Reference PDB: PDB 2R3Q 

Descriptor_Score: -26.16698 -30.83058 -17.86901 -23.67142 -8.72689 -14.40792 

MGE_Score: -30.64930 -35.99844 -21.49072 -28.90000 -13.62098 -19.95671 

PHS_Score: 4.954826 5.610463 4.244604 5.756922 5.129757 5.86296 
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  Table S5. Binding mode of the selected ligands with P(x) > = 0.98. The system used was DOCK scoring – 
MGE + PHS SCORE – using PDB 2R3Q. 

CID Name P(x) 

DB06616 Bosutinib - 

INTERACTIONS* 

 

DB09345 Pramocaine 0.9970 

INTERACTIONS* 
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Table S5 continued.. 

CID Name P(x) 

DB00433 Prochlorperazine 0.9919 

INTERACTIONS* 

 

DB00831 Trifluoperazine 0.9875 

INTERACTIONS* 
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Table S5 continued.. 

CID Name P(x) 

DB00134 Methionine 0.9830 

INTERACTIONS* 

 

DB01186 Pergolide 0.9813 

INTERACTIONS* 

 

*All images were generated with UCSF Chimera [66]. 
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Table S6. Interactions of the selected ligands with P(x) > = 0.98. The system used was DOCK scoring – 
MGE + PHS SCORE – using PDB 2R3Q. 

CID Name P(x) 

DB06616 Bosutinib - 

INTERACTIONS* 

 
DB09345 Pramocaine 0.9970 

INTERACTIONS* 
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Table S6 continued.. 

CID Name P(x) 

DB00433 Prochlorperazine 0.9919 

INTERACTIONS* 

 

DB00831 Trifluoperazine 0.9875 

INTERACTIONS* 
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Table S6 continued.. 

CID Name P(x) 

DB00134 Methionine 0.9830 

INTERACTIONS* 

 

DB01186 Pergolide 0.9813 

INTERACTIONS* 

 

*All images were generated in Discovery Studio [49]. 
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