

Original Communication

# Comparative chaperone activities of trigger factors from mesophilic and psychrophilic bacteria

I. I. Goryanin<sup>1</sup>, O. E. Melkina<sup>1</sup>, I. V. Manukhov<sup>1,2</sup>, G. B. Zavilgelsky<sup>1,\*</sup> and J. G. Wall<sup>3</sup>

<sup>1</sup>Bacterial Genetics Laboratory, Research Institute for Genetics and Selection of Industrial

Microorganisms, 1-st Dorozhniy pr., 1, 117545, Moscow, Russia; <sup>2</sup>Laboratory for Molecular Genetics,

Moscow Institute of Physics and Technology, Dolgoprudniy 141700, Russia.

<sup>3</sup>Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.

# ABSTRACT

The refolding level of thermally inactivated bacterial luciferases by trigger factor (TF) of the mesophilic bacterium *Escherichia coli* ( $TF_{Ec}$ ) and the psychrophilic bacterium Psychrobacter *frigidicola* (TF<sub>Pf</sub>) was measured. Refolding of heat inactivated luciferases reached a maximum of 25-30% in E. coli ∆dnaKdnaJ cells containing plasmids with a tig gene (encoding TF) and luxAB genes (encoding heterodimeric  $(\alpha\beta)$  luciferase from Photobacterium leiognathi). However, while the activity of  $TF_{Ec}$  was characterized by a significant reduction in refolding with an increase in TF concentration, the chaperone activity of the psychrophilic TF remained at a plateau at higher concentrations.  $TF_{Pf}$  also did not affect the growth kinetics of the host bacterial cells at high TF concentrations, unlike  $TF_{Ec}$ , which exerted a lethal effect on bacterial cells with increased concentration. Moreover,  $TF_{Ec}$  and  $TF_{Pf}$  effectively assisted in refolding dimeric forms of luciferase but were unable to refold an enzyme variant in monomeric form. Finally, luciferase refolding by  $TF_{Pf}$  was found to be more efficient in E. coli strains lacking the ClpB chaperone than in  $clpB^+$  strains.

**KEYWORDS:** chaperone, trigger factor, *Psychrobacter*, refolding, luciferase

### **INTRODUCTION**

The folding of newly synthesized polypeptide chains is the main function of the molecular chaperone trigger factor from Escherichia coli  $(TF_{Ec})$ . This role is closely associated with the work of the 50S ribosomal subunit with which it forms a stable complex during protein synthesis [1, 2, 3]. TF localizes at the ribosomal exit tunnel from which nascent polypeptide chains are released into the cytoplasm and is involved in the primary steps of protein assembly and folding, a process that is subsequently completed in the cytoplasm with input from the ATP-dependent DnaKJE and GroEL/ES chaperones [4, 5, 6]. In addition, the co-purification and stable association of TF with many full-length cytoplasmic polypeptides [7] indicate that TF is involved not only in co-translational folding of polypeptide chains at the ribosome, but also in posttranslational stabilization of their native protein structures.  $TF_{Ec}$  has been demonstrated to possess chaperone activity and can partially renature substrates such as urea denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzyme in vitro [8, 9]. We have reported that  $TF_{Ec}$  also assists the refolding of heat inactivated luciferase, both in vitro and in vivo, and, unlike the DnaK-ClpB bi-chaperone system, is able to recover the activity of heterodimeric but not monomeric luciferases [10, 11]. Furthermore, we demonstrated a rapid decrease, to negligible levels, in the ability

<sup>\*</sup>Corresponding author: zavilgel@genetika.ru

of  $TF_{Ec}$  to refold luciferases with increasing  $TF_{Ec}$ intracellular concentration. Since  $TF_{Ec}$  forms a homodimer at higher protein concentrations [12], it is thought that denatured proteins which associate with dimeric  $TF_{Ec}$  are unable to be released from the complex, resulting in reduced efficiency of the refolding process [10]. Trigger factor from *Psychrobacter frigidicola*  $TF_{Pf_2}$ alternatively, exists in solution exclusively in monomeric form, unlike its dimeric  $TF_{Ec}$ counterpart [13]. Therefore, in the current report we present a comparative analysis of the chaperone activities of  $TF_{Ec}$  and  $TF_{Pf}$  in vivo in the refolding of heat-inactivated heterodimeric and monomeric bacterial luciferases and thus, shed light on the mechanism of action of this molecular chaperone.

### MATERIALS AND METHODS

# Bacterial strains and plasmids

E. coli strains K12 MG1655 (prototroph) and its deletion mutant PK202 AdnaK14 AdnaJ14 dksA::kan were kindly provided by Dr. E. A. Craig (USA) [14]. SG20250  $\Delta lac$ U169 araD flbB relA and SG22100 clpB::kan (other markers are the same as SG20250) E. coli K12 strains were kindly provided by S. Gottesman and Y. Zhou (USA) [15]. Cells were grown in Luria-Bertani (LB) broth and LB agar containing ampicillin (100 µg/ml), kanamycin (20 µg/ml), and chloramphenicol (15 µg/ml) at 28 °C. The pLeo1 (Amp<sup>r</sup>) plasmid contains the Photobacterium leiognathi luxCDABE genes inserted into the pUC18 vector under the lac promoter [16]. The pKlux (Amp<sup>r</sup>) hybrid plasmid contained the BglII-SalGI fragment with Vibrio harveyi 392 luxAB genes inserted into the pBlueScript KS II vector under the *lac* promoter [17]. The pXen4 plasmid that contains *luxAB* genes from Photorhabdus luminescens Zm1 was prepared via subcloning of the XhoI-PstI digested DNA fragment from the pXen7, containing the complete P. luminescens lux operon in pUC19 vector under the control of the lac promoter [18]. The pPho1 plasmid contains Photobacterium phosphoreum luxAB genes under the control of the lac promoter [19]. The p15aratighisPF plasmid (pACYC184 vector containing *P. frigidicola tig* gene under the control of the arabinose (araB) promoter) was provided by Dr. S. Robin (NUI

Galway, Ireland) [13]. Plasmid pT7-mut3 (Amp<sup>r</sup>) was kindly provided by Prof. E. A. Meighen (USA). It contains the V. harveyi monocistronic *luxAB* gene that encodes a luciferase enzyme that is monomeric due to mutagenesis of the intercistronic region between the *luxA* and *luxB* genes and the operon sequence immediately upstream to the *luxB* transcription start position. Thus, the ATG initiation codon of *luxB* is changed to a CAG codon for glutamine in the *mut3* gene, which was cloned in the expression vector pT7-5 [20]. Plasmid pTf16 (Cm<sup>r</sup>) contains the *tig* gene of E. coli inserted into the pACYC184 vector under the control of the araB promoter and was obtained from the TAKARA BIO INC collection, Japan (Chaperone Plasmid Set).

### Measurement of bioluminescence intensity

Bacterial luciferases catalyze the oxidation of an aliphatic aldehyde (RCHO) by oxygen  $(O_2)$  in the presence of the reduced form of flavinmononucleotide (FMNH<sub>2</sub>) as follows:

 $FMNH_2 + RCHO + O_2 = FMN + RCOOH + H_2O + light quantum (\lambda_{max} = 490 \text{ nm})$ 

The bioluminescence of cell suspensions (200  $\mu$ l) was measured using a LM-01T (Immunotech) or a Biotox 7 ("Ekon" LTD) luminometer with the addition of 2  $\mu$ l of 0.001% *n*-decanal alcohol solution (Sigma) as a substrate to the sample. In experiments with *E. coli* cells (pLeo1), the addition of *n*-decanal was not necessary. The intensity of bioluminescence ( $\mu$ V) was measured at room temperature.

# Thermo-inactivation and refolding of luciferases *in vivo*

Thermal inactivation of luciferases was performed in a water bath at a fixed temperature. To suppress protein synthesis chloramphenicol (167 µg/ml) was added to the cell suspension. Refolding of luciferases was carried out at 22 °C. Bioluminescence was measured in time series aliquots. An aliquot of 200 µl of suspension was mixed with 2 µl of 0.001% *n*-decanal in ethanol for 30 s before measurement of bioluminescence. Preliminary heat shock was performed by incubating *E. coli* cells in LB medium in a thermostat at 42 °C for 30 min without the addition of chloramphenicol.

# RESULTS

# TF-dependent refolding of thermally inactivated luciferases

TF-dependent refolding of thermally inactivated luciferases was measured in vivo in E. coli PK202 AdnaKJ14 dksA::kan cells that contained hybrid plasmids expressing luxAB (pLeo1) genes and a *tig* gene from either the mesophilic bacterium E. coli (pTf16) or the psychrophilic bacterium P. frigidicola (p15aratighisPF). Prior to measurement, protein synthesis was inhibited via the addition of chloramphenicol (167 µg/ml) to cell suspensions, and to inactivate luciferase, cells were incubated in a water bath at 46 °C for 5 min. The dependence of TF-refolding (expressed as a percentage of the initial activity level) of thermally inactivated P. leiognathi luciferase on the concentration of L-arabinose is presented in Fig. 1a. The level of P. leiognathi luciferase refolding is extremely low (less than 1%) in the presence of lysates of E. coli PK202 ∆dnaKJ14 dksA::kan (pLeo1) cells, in the absence of TF-expressing plasmids. The presence of the pTf16 or p15aratighisPF plasmids, encoding the E. coli and P. frigidicola TFs, respectively, led to an increase in refolding up to a maximum of approximately 20-25% of the initial level. Significant differences are apparent between the luciferase refolding abilities of the  $TF_{Ec}$  and  $TF_{Pf}$  chaperones depending on their intracellular concentration. In the case of E. coli cells expressing  $TF_{Pf}$  from the p15aratighisPF plasmid, the refolding ability of cell lysates increased and reached an activity plateau at approximately 18% of the initial luciferase activity with increasing concentration of the L-arabinose (Fig. 1a). In the case of lysates of cells expressing  $TF_{Ec}$  from the pTf16 plasmid, the efficiency of luciferase refolding dropped rapidly with increasing concentration of the inducer in the medium, from a peak of 24% in the absence of arabinose to nearly zero in the presence of 20 mM L-arabinose (Fig. 1a). High refolding level in the absence of added arabinose is achieved due to leak-through transcription of the arabinose promoter [21]. It should be noted that the refolding activity of the psychrophile-derived TF was at its maximal level in the presence of 20 mM L-arabinose.

Fig. 1b shows the dependence of refolding of *P. leiognathi* luciferase on the duration of

incubation with TF-expressing E. coli cell lysates at 22 °C. In order to achieve maximal refolding levels for the two chaperones,  $TF_{Ec}$  was expressed in the absence of additional arabinose whereas  $TF_{Pf}$  was expressed in the presence of 50 mM arabinose, based on the results shown in Fig. 1a. In the case of  $TF_{Ec}$ -expressing cells, luciferase refolding proceeded during the 120 min incubation period and reached up to 30% in the E. coli PK202 (pTf16, pF2) cells that had been grown at 28 °C to mid-exponential phase in the absence of L-arabinose. In the case of  $TF_{Pt}$ expressing E. coli PK202 (p15aratighisPF, pF2) grown at 28 °C to mid-exponential phase in the presence of 50 mM L-arabinose, Fig. 1b reveals a very similar luciferase refolding, albeit with a slightly reduced reaction rate and slightly lower maximum level of refolding in the case of the  $TF_{Pf}$ chaperone.



**Fig. 1a.** Maximum level of TF-mediated refolding of heat-inactivated *P. leiognathi* luciferase with increasing concentration of L-arabinose used as inducer:  $\blacktriangle$  - TF<sub>P/</sub>; • - TF<sub>Ec</sub>. *E. coli* PK202 *dnaKJ14 dksA::kan* cells containing pLeo1 (*P. leiognathi* luciferase) and either pTf16 (TF<sub>Ec</sub>) or p15aratighisPF (TF<sub>P/</sub>) plasmids were incubated for 14 h at 22 °C after the addition of L-arabinose at concentrations from 0-50 mM to induce TF expression. Protein synthesis was stopped by the addition of chloramphenicol (167 µg/ml) and cells were incubated at 46 °C for 5 min to inactivate the luciferase. Refolding of thermally inactivated luciferase was carried out at 22 °C. The measured luciferase activity is presented as a percentage of the activity prior to inactivation.



Fig. 1b. Refolding of thermo-inactivated P. leiognathi lysates of E. PK202 luciferase using coli dnaKJ14dksA::kan cells expressing  $\blacksquare$  - TF<sub>Ec</sub> (pLeo1, pTf16);  $\blacktriangle$  - TF<sub>Pf</sub> (pLeo1, p15aratighisPF); • - no additional TF (pLeo1). E. coli PK202 dnaKJ14 dksA::kan (pLeo1, pTf16) cells were grown without Larabinose addition, while E. coli PK202 dnaKJ14 dksA::kan (pLeo1, p15aratighisPF) cells were grown with addition of the L-arabinose to the final concentration of 50 mM. After inhibition of protein synthesis via the addition of chloramphenicol (167 µg/ml) and inactivation of luciferase by incubation at 46 °C for 5 min, luciferase refolding was carried out at 22 °C. The enzymatic activity of luciferase is expressed as a percentage of the initial activity level.

It has previously been described that overproduction of  $TF_{Ec}$  in recombinant expression experiments exerts a lethal effect on the host bacterial cells [21, 22]. Fig. 2 shows the growth curves of E. coli PK202 cells, containing  $TF_{Pf}$ -encoding p15aratighisPF or TF<sub>Ec</sub>-encoding pTf16 plasmids, in the presence of varying arabinose concentrations in the medium. As can be seen, very significant inhibition of the growth is observed with plasmid pTf16 encoding the dimeric E. coli TF in the presence of 50 mM L-arabinose, while the growth of bacterial cells containing the p15aratighisPF plasmid, encoding monomeric  $TF_{Pf}$ , is unchanged in the presence of the same L-arabinose concentration. Therefore, it can be proposed that accumulation of the dimeric E. coli chaperone to higher concentrations is responsible for the reduction in chaperone activity and the toxic effect on the cell physiology, whereas the monomeric  $TF_{Pf}$  molecule is tolerated better by the expressing cells at comparable protein levels.

Previously we reported that the efficiency of DnaKJE- and  $TF_{Ec}$ -dependent refolding of different luciferase enzymes decreased with increasing thermostability of the enzymes [10, 23]. Fig. 3 shows the renaturation of luciferases of differing



**Fig. 2.** Growth curves of *E. coli* PK202 cultures containing  $TF_{Ec}$ - or  $TF_{Pf}$ -encoding plasmids in the presence or absence of L-arabinose inducer in the medium.  $\circ - E.$  coli PK202 cells (no additional TF genes);  $\bullet - E.$  coli PK202 cells with 50 mM L-arabinose added; *E. coli* cells encoding:  $\Box - TF_{Ec}$ ,  $\blacksquare - TF_{Ec}$  with 50 mM L-arabinose added; *E. coli* cells encoding:  $\Delta - TF_{Pf}$ ,  $\blacktriangle - TF_{Pf}$  with 50 mM L-arabinose added.



**Fig. 3.**  $\text{TF}_{Pf}$  - dependent refolding of thermo-inactivated luciferases by lysates of *E. coli* PK202 cells expressing  $\text{TF}_{Pf}$  and the following luciferases of differing thermal sensitivities: • - *P. phosphoreum* (pPho1); • - *P. leiognathi* (pLeo1); • - *V. harveyi* (pKlux); • - *P. luminescence* (pXen7). Cell growth and refolding conditions were as for Fig. 1b while cell suspensions were heated as follows for thermal inactivation of luciferases prior to refolding: *P. phosphoreum*, *P. leiognathi* - 46 °C, 5 min; *V. harveyi* - 47 °C, 15 min; *P. luminescence* - 48 °C, 15 min. Luciferase activity is plotted as a percentage of the initial activity level.

thermal stabilities in the presence of  $TF_{Pf}$ . Experiments were carried out by co-expressing  $TF_{Pf}$  from p15aratighisPF with *luxAB* luciferase genes on the following plasmids: pPho1 (from P. phosphoreum), pLeo1 (P. leiognathi), pKlux (V. harveyi) and pXen4 (P. luminescens) in E. coli PK202. According to previous measurements of thermal inactivation rate constants, thermolability of the luciferase enzymes investigated in this work decreases in the order P. phosphoreum > P. leiognathi > V. harveyi > P. luminescens luciferases [19]. In the case of  $TF_{Ec}$ , refolding of thermolabile luciferase from P. leiognathi reached significantly higher level (up to 30-40% of the initial enzyme activity) than in the case of the more thermostable V. harveyi (15%) and particularly P. luminescens (less than 1%) luciferases [10]. As can be seen from the data presented in Fig. 3, the  $TF_{Pf}$  chaperone exhibited a similar pattern of activity to that previously associated with  $TF_{Ec}$ , with a reduced refolding yield upon increasing luciferase thermostability. In the case of the most thermolabile luciferase from *P. phosphoreum*,

 $TF_{Pj}$ -mediated refolding reached 40-50% of the original activity, while the yield for the most thermostable *P. luminescens* luciferase achieved a maximal activity level of only approximately 1%.

To investigate the influence of the quaternary structure of the substrate protein on the ability of  $TF_{Pf}$  to assist its refolding, we used the heterodimeric V. harveyi bacterial luciferase (encoded on the pKlux plasmid containing luxAB genes) and an engineered monomeric version thereof (on plasmid pT7-mut3). These two forms of the luciferase exhibit almost identical temperature sensitivities (Fig. 4) and activities [20], even though the former has been shown to exist in a largely dimeric form and the latter exclusively as a monomer. DnaKJE- dependent refolding of the heat-inactivated luciferase revealed almost identical refolding kinetics and maximal refolded level of both the luciferase isoforms, at approximately 40% of the initial level of activity (Fig. 5a). In Fig. 5b, however, TF-dependent refolding of the same heat-inactivated V. harveyi luciferase isoforms



**Fig 4.** Thermo-inactivation of *Vibrio harveyi* luciferase and an engineered monomeric version thereof at 46 °C. *E. coli* PK202  $\Delta dna$ KJ14 *dks*A::*kan* (pKlux) cells were grown at 28 °C until the mid-exponential growth phase. Protein synthesis was stopped by the addition of chloramphenicol (167 µg/ml).  $\blacksquare$  - monomeric form of *V. harveyi* luciferase (pT7-mut3);  $\bullet$  - heterodimeric form of *V. harveyi* luciferase (pKlux).

demonstrates that  $\text{TF}_{Ec}$  (which forms dimers in solution) and  $\text{TF}_{Pf}$  (which exists in solution only in the form of a monomer) both promote refolding only of the heterodimeric luciferase variant. While refolding yields of up to 10% (TF<sub>Pf</sub>) and 20% (TF<sub>Ec</sub>) were achieved with the heterodimer under the assay conditions, both chaperones were almost completely ineffective in restoring the activity of the monomeric form of the same protein.

Disaggregation and refolding of proteins in E. coli are associated with the activity of the ATPdependent DnaKJE-ClpB bichaperone system. ClpB is not directly involved in refolding of substrates, but acts to disaggregate proteins. This role of ClpB is especially important in the disaggregation of large aggregates, which the DnaKJE system alone is not able to destroy [24]. Recently we have reported that in the absence of ClpB, the chaperone activity of  $TF_{Ec}$  increases in E. coli cells [10]. Data presented in Fig. 6 indicate that this phenomenon is conserved in  $TF_{Pf}$ . Measurement of the level of refolding of heat inactivated *P. leiognathi* luciferase using  $TF_{Pf}$ -expressing E. coli SG22100 clpB::kan cell extracts revealed that the maximum level of the  $TF_{Pf}$ -dependent refolding reached approximately 40%, whereas in the corresponding E.  $coli \ clpB^+$  strain, the maximal



**Fig. 5a.** DnaKJE-dependent refolding of thermo-inactivated bacterial heterodimeric ( $\alpha\beta$ ;  $\blacklozenge$ ) and monomeric ( $\Diamond$ ) forms of *V. harveyi* luciferase expressed in *E. coli* MG1655 *tig::kan* cells.



**Fig. 5b.** TF-dependent refolding of thermo-inactivated heterodimeric ( $\alpha\beta$ ) and monomeric forms of *V. harveyi* luciferase expressed in *E. coli* PK202 cells:  $\blacksquare$  - TF<sub>*Ec*</sub> - dependent refolding of heterodimeric *V. harveyi* luciferase;  $\square$  - TF<sub>*Ec*</sub> - dependent refolding of monomeric *V. harveyi* luciferase;  $\blacktriangle$  - TF<sub>*Pf*</sub> - dependent refolding of heterodimeric form of *V. harveyi* luciferase;  $\Delta$  - TF<sub>*Pf*</sub> - dependent refolding of monomeric *V. harveyi* luciferase; d - TF<sub>*Pf*</sub> - dependent refolding of monomeric *V. harveyi* luciferase. *E. coli* PK202 *dna*KJ14 *dks*A::*kan* (pKlux, pTf16) cells were grown with addition of the L-arabinose to the final concentration of 50 mM.



**Fig. 6.** The influence of ClpB chaperone on  $\text{TF}_{PJ}$ -dependent refolding of heat-inactivated *P. leiognathi* luciferase. The heat-inactivated luciferase was incubated with cell extracts of:  $\diamond$  - *E. coli* SG20250 *dnaKJ*<sup>+</sup>*clpB*<sup>+</sup> (pLeo1) cells;  $\diamond$  - *E. coli* SG20250 *dnaKJ*<sup>+</sup>*clpB*<sup>+</sup> (pLeo1, p15aratighisPF) cells;  $\Delta$  - *E. coli* SG22100 *dnaKJ*<sup>+</sup>*clpB*::*kan* (pLeo1);  $\blacktriangle$  - *E. coli* SG22100 *dnaKJ*<sup>+</sup>*clpB*::*kan* (pLeo1, p15aratighisPF) cells.

level of refolded luciferase reached was only 20%. We propose that this indicates that the ClpB chaperone competes with trigger factor for substrate binding and thus reduces the refolding activity of the latter, in contrast to the DnaKJE chaperone family that operates in a complex with ClpB in the cell [24].

#### DISCUSSION

Thermal inactivation of bacterial luciferases leads to exposure of hydrophobic epitopes with which DnaKJE family chaperones interact to refold the proteins [25]. Inability to refold denatured luciferases or refolding with a very low efficiency, is typical in the case of TF chaperones when monomeric luciferases are used as a substrate. This indicates a requirement of TF for a particular spatial, or rather quaternary, structure of the protein substrate for successful contact with the chaperone and folding. This assumption is supported by the data presented in [7], in which  $TF_{Ec}$  has been demonstrated to form complexes with various oligomeric proteins and to stabilize dimeric and oligomeric protein forms in the bacterial cytoplasm.

Chromosomally-encoded  $\text{TF}_{Ec}$  achieved refolding of only approximately 0.5-1.0% of the heatinactivated *P. leiognathi* luciferase that was

expressed in the same E. coli PK202 AdnaKJ14 dksA::kan cells, indicating the amounts of TF molecules expressed from the chromosomal gene were insufficient to promote efficient refolding. Introduction of an additional plasmid-encoded tig gene under the control of an inducible arabinose promoter increased the number of TF molecules in the cell and in addition, the efficiency of luciferase refolding, even in the absence of active induction of the plasmid-encoded  $P_{BAD}$  promoter. A significant reduction in the refolding efficiency occurred with a further increase in the  $TF_{Ec}$ intracellular concentration upon addition of arabinose, however, which is a previously reported peculiarity of TF from mesophilic bacteria and fundamentally different from the DnaKJE chaperone system, with which refolding efficiency reaches a plateau at increased DnaKJE concentrations rather than decreasing at increased chaperone levels [26]. It should be noted that an approximate fourfold increase in the intracellular TF concentration in *E. coli* cells leads to the reduced viability and even cell death [22]. As apparent from the present study, the increase of  $TF_{Ec}$  concentration in E. coli PK202 AdnaKJ14 dksA::kan cells is accompanied by a loss of cell viability and a concomitant reduction in the efficiency of the refolding process. The concentration of  $TF_{Ec}$  has also been demonstrated

to be crucial to the efficient refolding *in vitro* of GAPDH protein denatured using urea, with a significant reduction in renaturation of the enzyme at  $TF_{Ec}$  concentrations above optimal [9, 13].

It is hypothesized that these effects are determined by the peculiarities of the  $TF_{Ec}$  quaternary structure.  $TF_{Ec}$  exists in the form of a monomer and exhibits chaperone activity at low concentrations in the E. coli cytoplasm. This ability to form a complex with denatured proteins and release them in their native form disappears upon formation of dimers of  $TF_{Ec}$ , which occurs with increased concentration of the chaperone. As a result, proteins associated with  $TF_{Ec}$  are not able to escape from the complex, leading to reduced refolding efficiency. If proteins that are involved in cell division, such as FtsZ, a key cell division protein with which TF is known to form a complex [22], are bound by  $TF_{Ec}$  under the same conditions then inhibition of cell growth results. In this study, we have demonstrated that the chaperone activity of  $TF_{Pf}$  from the psychrophilic bacteria P. frigidicola, which exists exclusively in the form of a monomer irrespective of concentration, showed no reduction in refolding efficiency upon increasing its intracellular concentration. Furthermore, an increase in the intracellular concentration of  $TF_{Pf}$  to levels characterized by a dramatic growth inhibitory effect in the case of the mesophilic E. coli chaperone did not result in a lethal effect on the expressing cells. Thus, it is proposed that the dimeric form of TF determines its toxic effect on its host cells at high intracellular concentrations. Despite these structural and functional differences, it should be noted that  $TF_{Ec}$ from the mesophilic bacteria E. coli and  $TF_{Pf}$  from the psychrophilic bacteria P. frigidicola, while differing in their quaternary structures at higher concentrations [13], exhibited the same: 1) inability to refold a monomeric luciferase variant, demonstrating the importance of quaternary structure of protein substrates also for the TF folding process; 2) reduced refolding efficiency with increased thermostability of the substrate molecule, and 3) increased refolding efficiency in E. coli  $clpB^{-}$  compared with wild-type E. coli strains, suggesting competition of ClpB with the TFs for substrate binding and folding in E. coli.

# **CONFLICT OF INTEREST STATEMENT**

There are no conflicts of interest.

#### REFERENCES

- Merz, F., Boehringer, D., Schaffitzel, C., Preissler, S., Hoffmann, A., Maier, T., Rutkowska, A., Lozza, J., Ban, N., Bukau, B. and Deuerling, E. 2008, EMBO J., 27, 1622.
- 2. Hoffmann, A., Bukau, B. and Kramer, G. 2010, Biochim. Biophys. Acta, 1803, 650.
- 3. Hoffmann, A., Becker, A. H., Zachmann-Brand, B., Deuerling, E., Bukau, B. and Kramer, G. 2012, Mol. Cell, 48, 1.
- 4. Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E. and Ban, N. 2004, Nature, 43, 590.
- Baram, D., Pyetan, E., Sittner, A., Auerbach-Nevo, T., Bashan, A. and Yonath, A. 2005, Proc. Natl. Acad. Sci. USA, 102, 12017.
- Merz, F., Hoffmann, A., Rudkowska, A., Zachmann-Brand, B. and Bukau, B. 2006, J. Biol. Chem., 281, 31963.
- Martinez-Hackert, E. and Hendrickson, W. A. 2009, Cell, 138, 923.
- 8. Huang, G. C., Li, Z. Y., Zhou, Z. M. and Fischer, G. 2000, Protein Sci., 9, 1254.
- Liu, C. P., Perrett, S. and Zhou, J. M. 2005, J. Biol. Chem., 280, 13315.
- Melkina, O. E., Goryanin, I. I., Manukhov, I. V. and Zavilgelsky, G. B. 2013, Mol. Biol. (Mosc.), 47, 492.
- Melkina, O. E., Goryanin, I. I., Manukhov, I. V., Baranova, A. V., Kolb, V. A., Svetlov, M. S. and Zavilgelsky, G. B. 2014, Biochemistry (Mosc.), 79, 62.
- Patzelt, H., Kramer, G., Rauch, T., Schonfeld, H. J., Bukau, B. and Deuerling, E. 2002, Biol. Chem., 383, 1611.
- Robin, S., Togashi, D. M., Ryder, A. G. and Wall, J. G. 2009, J. Bacteriol., 191, 1162.
- 14. Kang, P-J. and Craig, E. A. 1990, J. Bacteriol., 172, 2055.
- 15. Gottesman, S., Roche, E., Zhou, Y. and Sauer, R. T. 1998, Genes Dev., 12, 1338.
- Zavil'gel'skiĭ, G. B., Kotova, V. Iu. and Manukhov, I. V. 2003, Mol. Biol. (Mosk.), 37, 704.

- 17. Manukhov, I. V., Duzhii, D. E. and Zavilgelsky, G. B. 1996, Biotekhnologiya, 1, 3.
- Zavil'gel'skiĭ, G. B., Zarubina, A. P. and Manukhov, I. V. 2002, Mol. Biol. (Mosk.), 36, 792.
- Zavilgelsky, G. B., Kotova, V. Yu., Mazhul' M. M. and Manukhov, I. V. 2004, Mol. Biol. (Mosk.), 38, 507.
- Boylan, M., Pelletier, J. and Meighen, E. A. 1989, J. Biol. Chem., 264, 1915.
- 21. Guthrie, B. and Wickner, W. 1990, J. Bacteriol., 172, 5555.
- 22. Genevaux, P., Keppel, F., Schwager, F., Langendijk-Genevaux, P. S., Hartl, F. U.

and Georgopoulos, C. 2004, EMBO Rep., 5, 195.

- Manukhov, I. V., Eroshnikov, G. E., Vyssokikh, M. Y. and Zavilgelsky, G. B. 1999, FEBS Lett., 448, 265.
- Goloubinoff, P., Mogk, A., Ben-Zvi, A. P., Tomoyashi, T. and Bukau, B. 1999, Proc. Natl. Acad. Sci. USA, 96, 13732.
- Rudiger, S., Germeroth, L., Schneider-Mergerier, J. and Bukau, B. 1997, EMBO J., 16, 1501.
- 26. Tomoyasu, T., Ogura, T., Tatsuta, T. and Bukau, B. 1998, Mol. Microbiol., 30, 567.