
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assessing the contribution of coevolving residues to the 
stability of proteins by computational means  
 

ABSTRACT 
In the multiple sequence alignment (MSA) of a protein 
family, non-conserved positions can be very important 
because the destabilizing effects of a given amino 
acid at one position can be compensated by the 
stabilizing effect of another amino acid at a different 
position. As a consequence these positions are often 
coevolving. Several methods are available for the 
detection of coevolving positions from the analysis 
of MSAs. Information about coevolution in combination 
with information on the changes in folding free-
energy produced by all possible point mutations 
of each residue can be very valuable to understand 
the protein mechanism and dynamic properties, 
and to design mutagenesis studies. Using an 
example based on the family of KDO8P synthase, 
an enzyme involved in the synthesis of bacterial 
endotoxin, we describe a general strategy to assess 
the contribution of coevolving residues to protein 
stability by computational means.  
 
KEYWORDS: coevolution, covariation, folding free 
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INTRODUCTION  
The net stabilization of the folded state of proteins 
relative to the unfolded state is usually so small, that 
all positions, conserved and non-conserved, contribute 
to protein stability. The existence of physical and 
functional interactions between sites in protein 
 

sequences leads to non-independence of their 
evolution; in other words, two (or more) positions 
in a protein sequence could be coevolving, and for 
any mutation to become fixed at such sites, 
compensatory mutations are needed at the related 
sites. When trying to extract the coevolution history 
of different residues inside a protein from the 
multiple sequence alignment (MSA) of its family 
it is important to realize that a high background 
of different interacting factors often hides the 
coevolutionary relationships between amino acid 
sites. A simple model to explain the correlation Cij 
between two sites i and j in a sequence alignment 
was proposed by Atchley et al. [1, 2]: 

Cij = Cphylogeny + Cstructure + Cfunction + Cinteraction  
        + Cstochastic                    (1)

In this model Cphylogeny is the correlation originating 
from phylogenetic relationships between homologous 
sequences that belong to the same branch of an 
evolutionary tree. For example, a mutation in 
an ancestral protein, which is clearly a single 
evolutionary event, appears in the MSA as an 
independent event that occurred in each of the 
proteins that descended from that ancestor. Cstructure 
and Cfunction represent the correlation originating from 
structural and functional constraints. Cinteraction describes 
both the interaction between the aforementioned 
sources of correlation, and the correlation originating 
from atomic interactions in homo-oligomeric proteins. 
Finally, Cstochastic represents the correlation originating 
from casual co-variation and/or from uneven or 
incomplete sequence sampling. Low-quality and 
poorly populated MSAs typically produce a high 
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is the propagation of statistical dependencies along 
chains of co-evolving contacts [15, 35]. In general, 
given residues A,B,C, when pair AB and pair BC are 
among the top pairs and represent true structural 
contacts based on protein geometry, we may find 
pair AC as highly covarying (yet distant in geometric 
structure) as an induced coupling produced by pairs 
AB and BC. This kind of induced coupling can extend 
along chains of contacts. For example if A contacts 
B, B contacts C, C contacts D, ...N-1 contacts N, 
covariation maps may show some level of 
covariation between A and N. On the other hand, 
two positions do not have to be part of a chain of 
contacts to appear correlated; what is important in 
these cases of covariation is not the presence of a 
direct physical interaction, but the fact that residues 
exposed to like forces (e.g, the hydrophobic interior 
or the hydrophilic surface), respond in a correlated 
fashion to the changes that affect the global fit 
function (which includes both stability and mechanism). 
Disentanglement of these two types of interactions 
(local/direct versus global/indirect) was attempted 
with the MIp [22], Zres [24] and Zpx [36] corrections 
of mutual information (MI) statistics, with the 
application of Bayesian network modeling in the 
logR method [26], with Direct Coupling Analysis 
(DCA) [28, 29, 32, 37], a maximum entropy 
method, with the use of sparse inverse covariance 
estimation in PSICOV [27], by employing a 
pseudolikelihood approach with plmDCA [29], 
gplmDCA [30], and GREMLIN [31], or by extending 
mutual information from 2 to 3 dimensions, as in 
3D_MI [38]. 
From the point of view of protein stability the 
organization of enzyme active sites is inherently 
unstable because these sites are optimized for catalysis, 
which means they are pre-organized to stabilize the 
transition state(s), rather than the protein [39, 40]. 
Thus, the substitution of a catalytic side chain 
(most often to alanine) will typically increase the 
overall protein stability, while sacrificing function 
[41, 42]. Conversely, most mutations that introduce 
a new function are destabilizing [43, 44]. The 
generality of this stability-function tradeoff must 
be viewed within the context of the fact that 
regardless of their effect on functions most mutations 
are destabilizing [45-48].  
In this context, it becomes natural to ask in what 
way are correlated mutations at different sites in a 
 

degree of false coevolution signals as a result of 
the significant effect of stochasticity [3-5]. 
A wide variety of algorithms have been developed 
to detect coevolving positions from an MSA 
(reviewed in [6-11]). Some of these methods use 
χ2-tests [12, 13], some are perturbative [14-16], others 
employ amino acid substitution matrices [17], and 
many work within the frame of information theory 
[18-32]. We recall here that information entropy, 
H(X), is a measure of the uncertainty associated 
with a discrete random variable X that assumes values 
{x1, ..., xn}: 

H X( ) = − p x( )
x∈X
∑ logb p x( )

                  
(2)

where b is the base of the logarithm used and p is 
the probability mass function of the variable X 
[33, 34]. Related to H(X), mutual information, 
MI(X;Y), measures the mutual dependence of two 
discrete random variables X and Y: 

MI X;Y( ) = MI Y;X( ) = p x, y( )
y∈Y
∑

x∈X
∑ logb

p x,y( )
p x( )p y( )

                                                                            (3) 

where p(x,y) is the joint probability mass function 
of X and Y, and p(x) and p(y) are the marginal 
probability mass functions of X and Y, respectively. 
Intuitively, MI measures how much knowing one 
of the two variables reduces the uncertainty about 
the other. In an MSA, the amino acids in a given 
column can be considered as a set of observations 
(xi) of a random variable X. An estimate of the 
entropy H(X) is obtained by using the observed 
amino acid frequencies, f(xi), in place of the 
underlying probabilities, p(xi); likewise, MI(X;Y) 
for a pair of columns can be derived using the 
frequencies, f(xi,yj), of all ordered pairs occurring 
in the two columns. In practice, MI between 
positions (columns in an MSA) reflects the extent 
to which knowledge of the amino acid at one position 
allows us to predict the identity of the amino acid 
at the other position [2, 20, 21]. If amino acids occur 
independently at the two sites, the theoretical value 
for MI is zero; conversely, MI is high if the two 
positions are correlated.  
A problem shared by most coevolution detection 
methods is that many structurally distant pairs appear 
to be strongly correlated. One source of this correlation 
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A general strategy to assess by computational 
means the contribution of coevolving residues 
to protein stability  

Obtaining a good MSA  
The first step in coevolution analysis is to obtain the 
best possible multiple sequence alignment of the 
protein family of interest. In our case, sequences 
for 8753 members of the KDO8PS family were 
downloaded as a single ‘fasta’ file from the UniProt 
database (http://www.uniprot.org/help/uniprotkb) 
[57]. Many of these sequences were highly 
redundant (for example originating from different 
strains of the same organisms), or incorrectly included 
in the family, and it was necessary to screen the 
sequences contained in the downloaded file based 
on the selection of a ‘reference’ sequence. In our 
example, we used the structure of KDO8PS from 
Neisseria meningitidis (Nm.) (Uniref Q9JZ55, PDB 
2QKF) [58]), as the representative structure of the 
family, and its sequence as the ‘reference’ sequence. 
The original dataset was reduced to a reliable ‘core’ 
by retaining only the regions of each sequence similar 
to the reference sequence, by removing outliers 
(sequences with less than 30% average alignment 
accuracy with all the other sequences in the dataset), 
and by reducing redundancy (the number of 
sequences that would allow pairwise alignments 
with no more than a given percentage of identity) 
to 95%. At the end of this screening the number of 
KDO8PS sequences decreased from 8753 to 1111. 
Independent MSAs were then calculated with 
Muscle [51], and Mafft [52], and then merged 
with T-Coffee [53]. While most of the sequences 
in the alignment were of length comparable to that 
of the Nm protein (280 residues), the merged 
MSA contained 474 columns due to the presence 
of multiple gaps. The MSA was then ‘trimmed’ in 
order to remove all the columns that did not 
correspond to a residue of the reference sequence, 
and sequences with too many gaps were removed 
leading to a final MSA consisting of 1056 rows 
(out of the initial 8753), and 280 columns.  

Calculating coevolution maps and validating 
against experimental distance maps  
We start by noticing that the words ‘coevolution’ and 
‘covariation’ are often used interchangeably in this 
type of studies because the statistical ‘covariation’ 
of amino acid symbols in the columns of an MSA 
 

protein affecting protein stability. During the past 
few years we have addressed this question as it applies 
to the family of KDO8P synthase (KDO8PS), a 
bacterial enzyme that synthesizes KDO8P from 
phosphoenolpyruvate (PEP) and arabinose 5-phosphate 
(A5P). This reaction is of significant biological 
relevance, as KDO8P is the phosphorylated precursor 
of KDO, which is an essential component of 
the endotoxin of Gram negative bacteria [49]. A 
combination of tools from information theory and 
structural modeling has provided an avenue to 
quantify the contribution of coevolving residues to 
the stability of KDO8P synthase [50]. We review 
here the methodology used in this study as it may 
be generally applicable to all protein families.  
 
METHODS    

Multiple sequence alignments 
Multiple sequence alignments (MSAs) of 1056 
sequences of KDO8PS were calculated independently 
with Muscle [51], and Mafft [52] and then merged 
together with T-Coffee [53]. 

Molecular dynamics simulations 
A complete three-dimensional model of Nm. 
KDO8PS was built with Prime 2.1 (Schrodinger, 
LLC) using primarily the X-ray structure of Nm. 
KDO8PS (PDB 2QKF) as template, and that of 
Aquifex aeolicus KDO8PS (PDB 1FWW) to build 
the residues missing in the Nm. structure. MD 
simulation were carried out with Desmond (D.E. 
Shaw Research) [54]. 

Coevolution analysis 
Covariation scores were calculated with the MSAvolve 
v3.0a Toolbox for Matlab available for download 
at our website (http://146.9.23.191/~gatti/coevolution/). 

FoldX calculations of protein stability  
ΔΔG changes associated with introducing any one 
of the 20 possible amino acids at each position in 
all four monomers of a tetramer (the biological 
unit) of Nm. KDO8PS were calculated with FoldX 
v3.0b4 [46, 55] following the procedure described 
in [56]. Each calculation was carried out in duplicate 
to ensure convergence: in this case the FoldX algorithm 
repeated the same mutations twice changing the 
rotamer set used and the order of moves such that 
alternative solutions could be explored. 
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Expected Squared Covariance (OMES) [12, 13], 
McLachlan Based Substitution Correlation (McBASC) 
[17, 63], Explicit Likelihood of Subset Co-variation 
(ELSC) [14], and Statistical Coupling Analysis 
(SCA) [15, 16, 64], which were shown in a recent 
survey [9] not to be very effective in the detection 
of true covarying pairs. 
All four methods used produced covariation maps 
that superimposed well with the contact map derived 
from the X-ray structure of Nm. KDO8PS (Figure 1). 
To quantify the detection of close contacts, we 
measured what fraction of all residue pairs 
separated by less than 8 Å in the X-ray structure 
was represented in the top covarying pairs identified 
by each method. A number of pairs equal to the 
number of residues L in each sequence was 
considered. This result was further filtered to 
include either all the pairs (Figure 2A) or only 
pairs whose component residues are separated by 
at least 20 positions in sequence space (Figure 2B): 
in general, correct prediction of pairs separated by 
at least 20 positions in sequence space is a better 
indicator of the method performance than the 
prediction of all pairs. In the example shown 
here, similar results were obtained with all four 
methods, but plmDCA and 3D_MI were about 
5 times faster than GREMLIN or hpPCA.  

Calculating the protein stability landscape  
In an earlier study we have used the experimentally 
validated FoldX algorithm [46, 47, 55] to calculate 
the folding ΔΔG changes associated with introducing 
any one of the 20 possible amino acids at each 
position of the structure of Nm. KDO8PS [50]. 
This type of calculation was initially introduced 
by Tokuriki et al. [65] to study the overall 
distribution of stability effects for all possible 
mutations in a large set of different single domain 
globular proteins. In our case we used an entire tetramer 
of Nm. KDO8PS, which is known to be the biological 
unit of the enzyme [58], and the individual mutations 
were introduced simultaneously in all four subunits. 
Thus, the calculated ΔΔG changes account also for 
the effects of mutations at the interface between 
subunits. Furthermore, as ΔΔG changes can be 
dependent on a particular conformation of the 
enzyme trapped in the crystal environment, the 
three-dimensional model of tetrameric Nm. KDO8PS 
derived from the X-ray structure [58] was relaxed by 
means of a molecular dynamics (MD) simulation under 
solvated conditions [50]. The MD run progressively 
eliminated possible errors in the original model and
 

is taken as an indication of the ‘coevolution’ of 
those positions in the protein family. Recently we 
have reviewed the performance of several methods 
[9, 38] for covariation analysis with both experimental 
and synthetic data sets, and found there is significant 
variability in their performance with different proteins 
[9]. Since a large fraction of the positions that coevolve 
are due to residues that are close to each other in space 
(local/direct interactions), one can expect significant 
overlap between the coevolution map of a protein 
family and the contact map of a representative 3D 
structure for that family. The strong statistical 
correlation between coevolving positions and 
positions that are within 8 Å of each other in 
space, but are separated by at least 10 positions 
along the linear sequence, forms the basis for the 
spectacular structure predictions that have been 
recently accomplished with the DCA and PSICOV 
methods using only sequence data [59-61].  
It is also important to realize that even algorithms 
whose overall performance with a given protein 
family is similar on a statistical basis, share no more 
than 2/3 of all the pairs among the top covariation 
scores [38]. For these reasons we recommend 
analyzing the MSA of interest with several methods, 
and then selecting the most effective one based on 
the method capacity to predict the close contacts 
observed in the representative X-ray structure.  
In our study of KDO8PS, coevolution maps were 
calculated with 3D_MI [38], hpPCA [32], plmDCA 
[29], and GREMLIN [31]. We refer the readers to 
the original reports for details of the algorithms 
used in each method. Programs implementing 
these algorithms can be downloaded from the 
respective authors websites, but are also available 
(with their original unmodified code) in 
our Matlab Toolbox MSAvolve v3.0a 
(http://146.9.23.191/~gatti/coevolution/) for the 
simulation and analysis of coevolution in proteins. 
3D_MI applies by default first an ‘average product 
correction’ (APC or MIp correction) [22] to remove 
entropic and phylogenetic bias, and then a ZPX 
correction [4, 24, 25, 62], which further improves 
the accuracy of covariation detection particularly 
in MSAs containing some degree of misalignment. 
In contrast, plmDCA, hpPCA, and GREMLIN, only 
apply by default the APC correction. We have 
applied a ZPX correction also to these methods, as 
without it their performance is significantly decreased. 
At this time we do not recommend using some older 
covariation methods including Observed Minus
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Figure 1. Correspondence between the distance map of Nm. KDO8PS and the coevolution maps of the KDO8PS
family obtained with different methods. Contact predictions by 3D_MI, hpPCA, plmDCA, and GREMLIN are 
shown as spots of size proportional to the covariation score. Gray regions represent the native distance map of Nm.
KDO8PS X-ray structure with a cutoff of 8 Å on the distance between the centroids of different residues. 

Figure 2. Detection of close contacts by coevolution maps. A. Each trace shows what fraction of all residue pairs 
separated by less than 8 Å in the reference X-ray structure is present in the top L covarying pairs identified by each 
method. B. Only pairs whose residues are separated by at least 20 intervening positions in sequence space are 
included in the analysis. True positives (covarying pairs corresponding to structural pairs < 8 Å apart) appear as 
upward displacements in the traces; false positives appear as horizontal segments in the traces.  
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residues (W,Y,F,H) tend to decrease stability (increase 
energy) at every position, and in four positions 
(21,68,231,232) any residue besides glycine or alanine 
decreases stability dramatically. These effects appear 
to be due to very large energy terms derived from 
van der Waals clashes of these residues with their 
surroundings. 

Calculating the contribution of coevolving 
positions to protein stability 
In order to determine the effect of coevolution on 
stability we compared the covariation score of each 
pair with the contribution to stability by that pair 
 

assured that the equilibrium structure of Nm. 
KDO8PS used in the FoldX calculation was as close 
as possible to the native structure in solution.  
The outcome of this calculation was a 2D-matrix 
of ΔΔG values that depicts the “stability landscape” 
of KDO8PS (Figure 3); the peaks in the landscape 
represent positions in the protein where introduction 
of a certain amino acid in the Nm. KDO8PS would 
significantly increase the folding free-energy ΔG, and 
therefore decrease the overall stability. While the 
energies derived from FoldX are not on an absolute 
scale [65], the relative trends are expected to be correct 
[66, 67]. In general, it can be seen how bulky aromatic

 

Figure 3. Stability landscape of KDO8PS. ΔΔG changes associated with introducing any one of the 20 possible 
amino acids at each position of all four subunits of the structure of Nm. KDO8PS were calculated using the FoldX 
algorithm to produce a “stability landscape” of KDO8PS: the peaks in the landscape represent positions in the 
protein where introduction of a certain amino acid would significantly decrease the overall stability. 
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KDO8PS would increase the folding free-energy 
by ~5 kcal/mol at position 31, and decrease it by 
~1 kcal/mol at position 58. Thus, for every position 
of KDO8PS we can calculate the folding free-energy 
change associated with converting the Nm. sequence 
 

in each sequence of the MSA with respect to the Nm. 
sequence; this was accomplished by applying to 
each sequence in the MSA the information contained 
in the stability matrix shown in Figure 3. For example, 
based on that matrix inserting a proline into Nm. 
 

Figure 4. Contribution of coevolving positions to the stability of Nm. KDO8PS. A. The first 100 residues of the 
3D_MI coevolution map are shown with gray shades proportional to the ΔΔG values for the transition Nm. → Hh. 
KDO8PS, as calculated from the stability landscape shown in Figure 3. Positive and negative values of the i,j pairs 
indicate increase (destabilization) or decrease (stabilization) in energy, respectively. B. The same 100 residues of the 
3D_MI coevolution map are shown with gray shades proportional to the values of ΔΔGij = (|ΔΔGi + ΔΔGj| - |ΔΔGi - 
ΔΔGj|). If the value of this difference is larger than 0, it means that the energy changes at the two positions of the i,j 
pairs point in the same direction (the two mutations are enhancing each other regardless of whether they are 
stabilizing or destabilizing); conversely if the value of this difference is smaller than 0, it means that the energy 
changes at the two positions of the i,j pairs point in opposite direction (the two mutations are partially neutralizing 
each other). C. Average effect on stability of a pair change from its composition in Nm. KDO8PS to its composition 
in a subset of sequences in the MSA: only pairs whose covariation would produce an increase in stability are shown. 
D. Same as C, but only pairs whose covariation would produce a decrease in the stability of the Nm. protein are shown. 
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and explore its composition throughout the alignment 
(this is a single ‘pencil’ in the 3D-matrix). For example, 
it turns out that pair 34,53 of Figure 4C has always 
an Ala at position 34 and either an Ile (-1 kcal/mol), 
Met (-0.8 kcal/mol), or Val (-0.7 kcal/mol) at position 
53. The same pair of Figure 4D can instead have 
G,A,S,T at position 34, and A,C,I,M,S,T,V at position 
53 with an average positive energy change of ~0.6 
kcal/mol. 

Visualizing coevolving positions in the 
representative structure of a protein family  
It is usually very informative to locate the high 
scoring pairs directly in the reference structure. In 
Figure 5A we show the structure of Nm. KDO8PS 
as a tube whose thickness in different points is 
proportional to the level of covariation in that part 
of the structure. Coevolving pairs that are within 
12 Å of each other are connected by dashed bonds: 
these pairs  account for 49 out of the top 50 scoring 
pairs in the coevolution map calculated with 3D_MI. 
Pairs whose covariation is most likely to increase 
the stability of Nm. KDO8PS are shown separately 
in Figure 5B as dotted van der Waals surfaces.  
 
DISCUSSION 
Due to the strong statistical correlation between 
coevolving positions and positions that are close 
in space, coevolution analysis can be a powerful tool 
for the prediction of protein folds from sequence 
data only, and there are already many reports of 
coevolution maps derived from MSAs of both soluble 
and membrane proteins, that were of sufficient quality 
to generate accurate 3-dimensional structures [59-
61]. However, very often structure prediction is not 
the goal and we are interested instead in structure-
function relationships. In these cases coevolution 
analysis can be instrumental in identifying coevolving 
positions as pointers of residues involved in specific 
catalytic activities and/or in protein stability. For 
example, a network of positions consisting of both 
catalytic and non-catalytic residues was recently 
identified in homing endonucleases using computational 
methods to predict coevolving residues [68]. In these 
enzymes, variants of catalytic residues with low 
activity could be rescued by restoring an optimal 
coevolving network with compensatory mutations 
of the non-catalytic residues. In another example, 
Wang et al. [69] used coevolving sites saturation 
mutagenesis (CCSM) to enhance the thermal stability 
of Bacillus subtilis α-amylase by 8 °C, a result that
 

to any other sequence in the MSA. This information 
can be stored in a 3D-matrix, in which the 1st and 
2nd dimensions provide the i,j identity of a 
covarying pair, and the 3rd dimension provides the 
free-energy change associated with changing that 
pair from its composition in Nm. KDO8PS to its 
composition in every other sequence. Since we 
are interested in coevolving positions we can fill 
the matrix for every possible i,j pair of residues 
that coevolution maps (calculated by any of the 
four methods) show to be highly covarying. We 
are interested not only in the sum (ΔΔGi + ΔΔGj) 
of the stability contributions of each member of an 
i,j pair (as these contributions can be considered 
approximately additive), but also in their difference 
(ΔΔGi - ΔΔGj), which provides additional information 
on whether the two contributions have similar or 
opposite effects. For example, we could look at the 
predicted energy changes associated with mutating 
the pairs with the highest covariation scores in the 
3D_MI map from the Nm. sequence to the sequence 
of Halobacteroides halobius (Hh.) KDO8PS. For 
ease of visualization we show in Figure 4A only 
the first 100 residues of the 3D_MI coevolution 
map gray shaded according to ΔΔG values for 
the transition Nm. → Hh. KDO8PS. Positive and 
negative values of the i,j pairs indicate increase 
(destabilization) or decrease (stabilization) in energy, 
respectively. In Figure 4B the values of ΔΔGij = 
(|ΔΔGi + ΔΔGj| - |ΔΔGi - ΔΔGj|) are shown. If the 
value of this difference is larger than 0, it means 
the energy changes at the two positions of the i,j 
pairs point in the same direction (the two mutations 
are enhancing each other regardless of whether 
they are stabilizing or destabilizing); conversely if 
the value of this difference is smaller than 0, it 
means the energy changes at the two positions of 
the i,j pairs point in opposite direction (the two 
mutations are partially neutralizing each other). It 
is also possible to look at the average effect on 
stability of a pair change from its composition in 
Nm. KDO8PS to its composition in all the other 
sequences of the MSA combined. For example, in 
Figure 4C we see pairs whose covariation in a 
subset of all sequences would produce an average 
increase in stability, and in Figure 4D pairs whose 
covariation in a different subset of all the sequences 
would produce an average decrease in stability of the 
Nm. protein. Finally, we can further analyze a specific 
covarying pair for increased (or decreased) stability, 
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calculating the folding ΔΔG changes associated with 
introducing any one of the 20 possible amino acids 
at each sequence position of the X-ray structure of 
this protein. Free-energy calculations were carried 
out with the FoldX algorithm, which uses a full 
atomic description of the structure of proteins and 
whose different energy terms have been weighted 
using empirical data obtained from protein engineering 
experiments [46, 55, 70]. Recent comparisons of 
various methods designed to predict the ΔΔG changes 
associated with mutations, ranked FoldX among the 
best performing ones [66, 67].  
Calculation of the stability landscape (using FoldX 
or other comparable method) can be an important 
tool to integrate structural data with information 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

could not be achieved by any ordinary rational 
introduction of single or double point mutations or 
by random mutagenesis.  
Since, in addition to structure prediction, coevolution 
analysis can be very effective to design mutagenesis 
strategies, in this article we aimed to provide the 
reader with a well tested strategy to a) identify 
coevolving residues from the analysis of MSAs, 
and b) predict the effect on stability of different 
pairs of residues at specific coevolving positions. 
To this end, we have used our recent study of the 
contribution of coevolving residues to the stability 
of Nm. KDO8P synthase [50] as a practical example. 
A key step in our study was the derivation of the 
stability landscape of Nm. KDO8PS (Figure 3) by
 

Figure 5. Location of coevolving pairs in the X-ray structure of Nm. KDO8PS. A. Stereo-view of a monomer of 
Nm. KDO8PS (PDB entry 2QKF): the structure is shown here as a tube whose thickness is proportional to the 
maximum covariation score of each column of the coevolution map (corresponding to a position in the structure) 
calculated with the 3D_MI method. Pairs of residues separated by less than 12 Å are connected by dashed bonds. 
B. Stereo-view of a monomer of Nm. KDO8PS in the same orientation as in panel A: pairs whose covariation to the 
residues present in other sequences of the MSA are predicted to increase the stability of Nm. KDO8PS are shown as 
thin sticks inside dotted van der Waals surfaces. Dashed bonds connect covarying pairs separated by less than 12 Å 
(as in panel A). This subset of covarying pairs is only partially overlapping the subset of pairs that increase stability.  
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known coevolving positions associated with specific 
fitness levels of each protein.  
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matrices with any protein family, can be requested 
directly from the author.  
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