
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Modeling of fungicide activity of trifluoromethyl-substituted 
1,2,4-triazoles using PLS, ANN and SVM 
 

ABSTRACT 
1,2,4-triazole derivatives have a wide spectrum of 
biological activities, including anti-inflammatory, 
antiviral, analgesic, antimicrobial, anticonvulsant, 
anticancer, antioxidant and antidepressant. In this 
study, quantitative structure-activity relationships 
(QSAR) of trifluoromethyl-substituted 1,2,4-triazole 
derivatives with fungicidal activity against Fusarium 
oxysporum f. sp. cucumerinum were investigated 
by employing modern modeling approaches. In 
a previous work two types of E and Z isomers 
were found and several molecular descriptors were 
calculated from their minimum energy conformations. 
In this study, these descriptors were correlated 
with the experimental fungicide relative inhibition 
rate using artificial neural networks (ANNs) and 
support vector machine (SVM) methods. Partial least 
squares (PLS) calculations were also performed 
for the same sets. The predictive ability of these 
models was validated by several criteria using an 
external set of five out of eighteen compounds. 
Best results were obtained by means of the SVM 
model for Z isomers, which could be used for the 
prediction of new fungicides with higher activity. 
 
KEYWORDS: QSAR, fungicide, PLS, SVM, ANN, 
1,2,4-triazoles 

INTRODUCTION 
1,2,4-triazole and its derivatives represent a flexible 
class of biologically active compounds, possessing a 
wide spectrum of activities, including anticonvulsant, 
antidepressant, antioxidant, anti-inflammatory, 
analgesic, antinociceptive, antibacterial, 
antimycobacterial, antifungal, antiviral, anticancer, 
anti-parasitic, and anti-urease [1, 2]. 
1,2,4-triazole fragment is used in several 
therapeutically interesting drugs [3]. Some of the new 
drugs containing fused heterocycles with a triazole 
moiety that are worth mentioning are alprazolam, 
triazolam, estazolam (hypnotic, sedative, tranquilizer), 
trazodone (antidepressant, anxiolytic), trapidil 
(hypotensive), terconazole (antifungal), hexaconazole 
(antifungal), etizolam (amnesic, anxiolytic, 
anticonvulsant, hypnotic, sedative and skeletal 
muscle relaxant), rilmazafon (hypnotic, anxiolytic) 
and rizatriptan (antimigrane agent). Mannich bases 
with good antibacterial activity mainly contain 
morpholine, 4-benzylpiperazine, N-methylpiperidine 
and trifluoromethylphenylpiperazine in the 
aminomethyl group [4, 5]. 
In 1996, Williams reported that around 25% of all 
agrochemical compounds used commercially are 
chiral compounds, accounting for 26% of the total 
agrochemical market value [6, 7]. Triazole chirality 
(asymmetrical carbons existing at the position(s) 
immediate and/or vicinal to the triazole rings) is 
expected to play an important role in the bioactivities 
of triazole fungicides [8, 9]. Several chiral 
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N-substituted azoles are used as wide range 
fungicides, and as plant growth regulators [10]. 
Fluoroaryl derivatives of 1,2,4-triazole such as 
fluconazole, fosfluconazole, voriconazole, and 
itraconazole are inhibitors of the fungal cytochrome 
P450 enzyme 14 α-demethylase [11]. Some 
derivatives of 3-trifluoromethyl-1,2,4-triazole-5-
thione have been shown to exhibit a high 
fungicide activity [12]. 
Triazoles are used as fungicides in fruits, vegetables, 
legumes and grain crops, both as pre- and postharvest 
applications [13]. The mechanism of their antifungal 
effect is based on the inhibition of ergosterol 
biosynthesis (being involved in the fungal cell-
wall formation) and of sterol 14 α-demethylase. 
It was found that 3-amino-1,2,4-triazole is an 
inhibitor of mitochondrial and chloroplast function, 
and it is used as a herbicide and cotton defoliant. 
The antimicrobial, anticonvulsant and antidepressant 
characteristics of 1,2,4-triazoles were reported by 
Siwek et al. [14].  
This paper presents a quantitative structure-
fungicidal activity relationship study for a 
series of eighteen 1-[(4-substituted-benzylpiperazin-
1-yl) methyl]-4-(substituted)benzylideneamino-3-
trifluoromethyl-1H-1,2,4-triazole-5(4H)-thiones, 
which were tested against the Fusarium oxysporum f. 
sp. cucumerinum fungi test [12]. Three types of 
modern QSAR methods, namely partial least squares 
(PLS), artificial neural networks (ANNs) and support 
vector machines (SVMs) were applied to gain 
information on designing new fungicides with 
higher activity. 
 
MATERIALS AND METHODS 

Definition of target property and molecular 
structures 
A series of 18 Mannich bases having trifluoromethyl-
substituted 1,2,4-triazole containing substituted 
benzylpiperazine ring (Table 1) was used [12]. Their 
fungicidal relative inhibition rate (RIR) against 
Fusarium oxysporum f. sp. cucumerinum was 
employed as a dependent variable.  
These fungicides were previously [15] modeled 
using a conformer ensemble for the herbicide 
structures, which was generated by means of the 
MMFF94s force field included in the Omega  
(version 2.5.1.4, OpenEye Scientific Software, 
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Santa Fe, NM. http://www.eyesopen.com) software 
[16, 17]. Starting from the two types of E and Z 
isomers generated with respect to the C=N bond 
by Omega, two series of compounds were built. 
Structural 0D, 1D, 2D and 3D descriptors were 
calculated for the lowest energy structures using 
the DRAGON (Dragon Professional 5.5 (2007), 
Talete S. R. L., Milano, Italy), InstantJchem 
(which was used for structure database management, 
search and prediction) (InstantJchem 15.7.27, 
2015, ChemAxon (http://www.chemaxon.com) 
and ChemProp (UFZ Department of Ecological 
Chemistry 2014. ChemProp 6.2; 
http://www.ufz.de/index.php?en=34593 softwares.  

The partial least squares (PLS) method 
The partial least squares (PLS) regression is a 
statistical technique in which independent responses 
are related to projections of factors [18]. In PLS a 
block of response variables are linked to a block 
of explanatory (even correlated) variables and 
thus stable and highly predictive models are 
accomplished [19]. 
In the PLS model of F dimension, significant 
principal components (tif columns, as presented in 
equation (1), i = 1, ..., N) of N training set 
compounds are calculated from the X matrix of 
chemical descriptors. 

∑
=

+⋅+=
F

1f
ikiffkkik etpxx       (1)

where kx represents the mean of variable k, pfk the 
loading of variable k in dimension (factor) f, and eik 
the residuals [20]. A maximal covariance between the 
consecutive orthogonal latent variables (tif) and 
the dependent variables (y) is obtained. The linear 
PLS inner relation is described by equation (2): 

∑
=

+⋅+=
F

1f
iiffi etbyy        (2)

where y  represents the average of the y-variable 
and bf the regression coefficients. They can be 
used to transform the biological activity y as a 
function of the original xk descriptors. 
PLS calculations were performed using the 
SIMCA (P+ 12.0.0.0 May 20 2008, Umetrics, 
Sweeden, http://www.umetrics.com/) package. 
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  Table 1. Trifluoromethyl-substituted 1,2,4-triazoles structures, experimental Fusarium oxysporum f. sp. 
cucumerinum (RIRexp) and predicted relative inhibition rate by the PLS, ANN and SVM models calculated 
for isomer E and Z series. 

No. Structure RIRexp 
RIRpred 
PLS_E 

RIRpred 
PLS_Z 

RIRpred 
ANN_E 

RIRpred 
ANN_Z 

RIRpred 
SVM_E 

RIRpred 
SVM_Z 

1 
N

N N N

N

N

FF
F

S

 
0.101 0.190 0.505 0.178 0.107 0.083 0.083 

2 
N

N N
N

N
NF

F F
F

S

 

0.804 0.453 0.571 0.229 0.121 0.237 0.083 

3 
N

NNN

N

N
O

F F
F

S

 
 

0.187 0.187 0.403 0.143 0.100 0.168 0.083 

4 N
NN

N
N

N O

O

F F
F

S

 

0 0.122 0.020 0.113 0.085 0.151 0.083 

5 
N

N N N

N

N

FF
F

S

Cl

 
0 0.359 0.083 0.252 0.378 0.301 0.319 

6 N
N N

N
N

NN
O

O

F F
F

S

 
0.402 0.348 0.376 0.301 0.312 0.298 0.386 

7 
N

N N N

N

N

FF
F

S
Cl

 
0.509 0.396 0.638 0.566 0.732 0.486 0.676 

8 
N

N N
N

N
NF

F F
F

S Cl

 
0.719 0.631 0.698 0.443 0.369 0.368 0.386 

9 
N

NNN

N

N
O

F F
F

S
Cl

 
0.604 0.337 0.542 0.297 0.312 0.294 0.386 

10 N
NN

N
N

N O

O

F F
F

SCl

 

0.401 0.258 0.454 0.319 0.348 0.275 0.386 

11 
N

N N N

N

N

FF
F

S

Cl

Cl

 
0.303 0.431 0.165 0523 0.525 0.462 0.543 

12 
N

N N
N

N
NN

O
O

F F
F

S Cl

 
0.502 0.526 0.491 0.621 0.711 0.458 0.623 

13 
N

NNN
N

N

FF
F

S
Cl Cl

 
0.708 0.627 0.756 0.935 0.768 0.614 0.743 
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errors [24] were employed in this study. The hidden 
layer contained variable nodes, and the input and 
hidden variables each had a bias neuron.  
Input and output data were normalized between 0.1 
and 0.9, and models were evaluated on the basis of 
correlation coefficient (r) and root-mean-square 
error (RMSE). ANN calculations were carried out 
using an in-house program. A commonly used log 
sigmoid function and the delta rule for the error 
correction formula were used in the networks. 

Model validation 
The data over-fitting and model applicability were 
controlled by comparing the root-mean-square errors 
(RMSE) and the mean absolute error (MAE) [25] 
of the training and validation sets. 
For internal validation results several measures of 
robustness were employed: Y-scrambling [26] and 
q2 leave-one-out and leave-seven-out cross-validation 
function coefficients.  
The concordance correlation coefficient (CCC) 
[27] was used to test the robustness and predictive 
power of the model. A threshold value higher than 
0.85 (which has been rigorously determined by a 
simulation study [28]) was employed. 
To test the predictive power of the model, other 
parameters were calculated: the predictive r2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SVM approach 
The support vector machines (SVMs) are a set of 
supervised learning methods used for classification, 
regression and detection of outliers [21]. SVM has 
several advantages over other methods such as 
MLR and ANN [22]. SVMs have been applied to 
solve regression problems for data sets by choosing 
a suitable cost function (ε-insensitive loss function). 
The regression function (SVR), in the LIBSVM 
software [23] was employed for this modeling. In 
order to accurately evaluate the predictive performance 
of SVM models, two parameters have to be 
optimized: gamma (g) and cost (c) in LIBSVM.  

ANN method 
Artificial neural networks (ANNs) have an inherent 
ability to provide nonlinear and cross product terms 
for QSAR modeling. ANNs are especially useful 
when a rigid theoretical basis and/or mathematical 
relationship describing a phenomenon to be modeled 
are not available beforehand as in the case of SVMs.  
However, it has significant disadvantages, including 
local minima, over-fitting, over-training, and long 
processing time.        
Among the many ANN approaches, differing both 
in architecture and in learning algorithms, the 
three-layer ANNs with the back–propagation of 
 

Table 1 continued.. 

14 
N

NNN

N

N
F

FF
F

S
Cl Cl

 
0.826 0.861 0.817 0.647 0.622 0.525 0.623 

15 
N

NNN

N

N
O

FF
F

S
Cl Cl

 
0.504 0.663 0.700 0.629 0.658 0.500 0.623 

16 
N

N
N

N

N

N

O

O

F
F
F

S

Cl

Cl

 

0.705 0.614 0.644 0.508 0.653 0.453 0.623 

17 
N

NNN

N

N

FF
F

S

Cl

Cl Cl

 
0.607 0.690 0.811 0.692 0.654 0.546 0.691 

18 
N

NNN

N

N
N

O

O

FF
F

S
Cl Cl

 
0.608 0.738 0.596 0.178 0.107 0.83 0.083 
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R software (R Development Core Team, ISBN 
3-900051-07-0 (2010); retrieved from www.
r-project.org), based on the silhouette values. The 
silhouette index measures how well an object has 
been classified by comparing its dissimilarity within 
its cluster and with its nearest neighbor. Following 
compounds were chosen as a test set to validate the 
final models: 1, 7, 10, 12, and 17 (Table 1) in both 
series, containing the E and Z isomers. 
PCA models for both E and Z series of isomers 
were built for the entire X matrix (including N = 18 
compounds and X = 1464 descriptors). The first 
three (from the total number of six and eight for 
E and Z isomers, respectively) significant principal 
components explained 72.4% and 76.7% of the 
information content of the descriptor matrix for 
the E and Z isomers, respectively. 
PLS calculations were performed to correlate the 
RIR experimental values with all the calculated 
descriptors. The PLS model was constructed using 
the training set, and one principal component PLS 
model was obtained for both datasets: R2X(cum) 
= 0.726, R2Y(cum) = 0.576, Q2(cum) = 0.533 for 
E isomers, and R2X(cum) = 0.756, R2Y(cum) = 
0.823, Q2(cum) = 0.815 for Z isomers, where 
R2Y(cum) is the cumulative sum of squares of the 
entire Y’s explained by all extracted principal 
components and Q2(cum) is the fraction of the 
total variation of the Y’s that can be predicted for 
all the extracted principal components.  
Table 2 presents the type [36] of significant 
descriptors included in the final PLS models. 
The importance of a given x variable for the Y 
matrix is proportional to its distance from the origin 
in the loading space. These lengths correspond to 
 

( )2
predr [29] and 2

mr [30] parameters. It is considered 

that for a predictive QSAR model, the value of 2
predr  

and 2
mr  should be higher than 0.5. In addition, several 

types of variances explained in external prediction 
like 2

1FQ  [31], 2
2FQ [32], and 2

3FQ  [33] were 
considered too (models with values higher than 0.7 
were considered as acceptable [28]). 
Among other statistical measures to check the 
model predictivity, the following parameters were 
used [34]: (i) squared correlation coefficient (r2) 
between the predicted and observed activities as 
well as squared correlation coefficient by cross-
validation (Q2); (ii) coefficient of determination 
for linear regressions with intercepts set to zero, 
i.e. R0

2
 (predicted versus observed activities), and 

R0
`2 (observed versus predicted activities); (iii) slopes 

k and k’ of the above-mentioned two regression 
lines. The following conditions should be satisfied 
for a model with acceptable predictive ability: 

q2 > 0.5           (a)

r2 > 0.6                        (b)

(R2- R0
2)/ R2 < 0.1 and 0.85 ≤ k ≤ 1.15 or      (c)

(R2- R0
`2)/ R2 < 0.1 and 0.85 ≤ k` ≤ 1.15     (d)

⏐R2- R0
`2⏐< 0.3         (e)

 
RESULTS AND DISCUSSION 

PLS modeling results 
Four clusters were found on the basis of the partition 
against medoids (PAM) algorithm [35] using the 
 

Table 2. Descriptors [36] included in the final PLS models. 

Constitutional descriptors: nX* 
Topological descriptors: BIC1*, SIC3*, SIC1*, BIC3*  
2D autocorrelations: MATS8p*   
Galvez topological charge indices: JGI2*  
Functional group count: nArX*  
WHIM descriptors: E1v**, E1p**, E1e**, E1s**, L3m**, L3s** 
GETAWAY descriptors: H3e**, R3u+*, H3u**, RTm+*, R1v+*,**, RTv+*,** 
3D-MoRSE descriptors: Mor28v**, Mor28p**, Mor28e**, Mor22m*, Mor28u** 

*for E isomer set 
**for Z isomer set 
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calculated from the amount of Y variance of each 
PLS component. The noise variables (variable 
coefficient values close to 0) were excluded to 
reduce the model over-fit. The PLS coefficients 
and VIP plots are presented in figures 1 and 2. 
Y-randomization test and leave-seven-out 
crossvalidation runs were performed to check the 
 

the PLS regression coefficients derived from the 
first component. The importance of descriptors was 
evaluated by the VIP (variable influence on 
projection) values [37], which summarizes the 
importance of the x variables for both Y and X 
matrices in the model. This is a weighted sum of 
squares of the PLS-weights, with the weights 
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Figure 1. PLS regression coefficients’ plot of the one-component PLS model, for E (a) and Z 
(b) isomer sets. The bars indicate 95% confidence intervals based on jack-knifing. 
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E isomer series, and R2 (0.0316) and Q2 (-0.244) for 
the Z isomer series indicate no chance correlation 
for the chosen model. 
The fitting and predictivity criteria for the PLS 
models are presented in tables 3-5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

robustness and internal predictive ability of the 
PLS models. The risk of chance correlation was 
verified by the Y-scrambling procedure, which 
was repeated 999 times. The extremely low values 
of scrambled R2 (0.111) and Q2 (-0.172) for the 

(a) 

(b) 

Figure 2. VIP plots of the x-variables of the one-component PLS models for E (a) and Z (b) isomer sets. 
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  Table 3. Internal validation parameters of the PLS, ANN and SVM models (training, tr, and cross-
validation, cv, sets)*. 

Model 2
trainingr  2

LOOq  2
O7Lq  RMSEtr MAEtr CCCtr RMSEcv MAEcv CCCcv 

PLS_E 0.576  0.533 0.181 0.144 0.731 0.190 0.150 0.690 
PLS_Z 0.823  0.815 0.117 0.086 0.903 0.119 0.090 0.896 
ANN_E 0.821 0.632  0.115 0.106 0.901 0.147 0.124 0.792 
ANN_Z 0.887 0.855  0.092 0.070 0.938 0.222 0.197 0.855 
SVM_E 0.632 0.576  0.165 0.143 0.734 0.124 0.104 0.731 
SVM_Z 0.855 0.823  0.104 0.096 0.920 0.122 0.113 0.891 

* 2
trainingr - correlation coefficient; 2

LOOq - leave-one-out correlation coefficient; 2
O7Lq - leave-seven-out correlation 

coefficient; RMSEtr and RMSEcv – training and cross-validation root-mean-square errors; MAEtr and MAEcv – training and 
cross-validation mean absolute errors; CCCtr and CCCcv – training and cross-validation concordance correlation coefficients. 
 

Table 4. External validation parameters of the PLS, ANN and SVM models (test set)*. 

Model 2
1FQ  2

2FQ  2
3FQ  RMSEext MAEext CCCext 

2
mr  

2
predR  

PLS_E 0.720 0.679 0.874 0.099 0.090 0.846 0.575 0.720 
PLS_Z -0.292 -0.478 0.417 0.099 0.160 0.376 0.335 -0.292 
ANN_E 0.560 0.537 0.811 0.119 0.102 0.730 0.618 0.560 
ANN_Z 0.690 0.674 0.867 0.099 0.072 0.633 0.548 0.690 
SVM_E 0.489 0.462 0.781 0.128 0.106 0.873 0.618 0.560 
SVM_Z 0.889 0.883 0.952 0.060 0.043 0.945 0.775 0.889 

* 2
1FQ [31], 2

2FQ [32], 
2

3FQ [33] - external validation parameters; RMSEext - root-mean-square errors; MAEext - 
mean absolute error; CCCext - external concordance correlation coefficient. 

Table 5. Tropsha et al. [34] criteria calculated for external validation of the PLS, ANN and SVM 
models (test set)*. 

Model 2
testr  ( ) 22

0
2 r/rr −  ( ) 22'

0
2 r/rr −  k k’ 

2'
0

2
0 rr −  

PLS_E 0.720 0.056 0.009 0.995 0.959 0.034 
PLS_Z 0.348 0.004 3.665 0.995 1.234 1.276 
ANN_E 0.669 0.009 0.111 1.160 0.820 0.069 
ANN_Z 0.776 0.111 0.003 1.051 0.909 0.083 
SVM_E 0.849 0.018 0.001 1.306 0.747 0.015 
SVM_Z 0.908 0.024 0.003 1.024 0.961 0.019 

* 2
testr - squared correlation coefficient between the predicted and observed activities; 2

0r - coefficient of 
determination for linear regressions with intercepts set to zero, i.e. (predicted versus observed activities); 

2'
0r - coefficient of determination for linear regressions with intercepts set to zero (observed versus predicted 

activities); k and k’- slopes of the above-mentioned two regression lines. 
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RMSE and MAE values indicate an internally 
predictive model. 
The calculated concordance correlation coefficient 
values for the training (CCCtr = 0.920), 
crossvalidation (CCCcv = 0.891) and test (CCCext 
= 0.945) sets indicate a robust model with good 
predictive power, which was confirmed by the 

2
predr  value of 0.889 and by all the other 

predictivity parameters ( 2
1FQ  = 0.889, 2

2FQ = 0.883, 
2

3FQ  = 0.952, 2
mr  = 0.775 and all parameters of 

Tropsha et al., see table 5). 
The fitting and predictivity results for all the other 
PLS, SVM and ANN models were worse. The 
SVM for Z isomers model had comparable, but 
better results compared to the MLR ones obtained 
for Z isomers and same test set (for which 
following results were obtained: 2

trainingr = 0.820, 
2
LOOq = 0.705, RMSEtr = 0.12, RMSEcv = 0.15, 

RMSEext = 0.05, MAEtr = 0.11, MAEcv = 0.14, 
MAEext = 0.04, CCCtr = 0.901, CCCcv = 0.840, 
CCCext = 0.949, 2

1FQ  = 0.907, 2
2FQ =0.903, 

2
3FQ = 0.960, 2

mr  = 0.893, and 2
predr = 0.907). 

 
CONCLUSION 
The fungicidal activity of the trifluoromethyl-
substituted 1,2,4-triazoles against the F. 
oxysporum f. sp. cucumerinum, in terms of 
relative inhibition rate, was correlated with 
structural descriptors using the partial least 
squares (PLS), artificial neural networks (ANN) 
and support vector machine (SVM) methods. The 
compound stereoselectivity, with respect to the 
C=N bond, can influence the fungicidal activity. 
Better results were obtained for Z isomers 
compared to E isomers. Several criteria of internal 
and external validation to check the model 
robustness and predictivity were used to compare 
the results obtained by these approaches. We 
conclude that new trifluoromethyl-substituted 
1,2,4-triazole derivatives with improved 
fungicidal activity against the F. oxysporum f. sp. 
cucumerinum could be best predicted by the SVM 
approach.  

Best statistical results for fitting, but poor predictive 
model power was observed in the case of PLS model 
computed for Z stereoisomers. The statistical results 
of the PLS model for E isomers were worse from 
the fitting point of view, compared to results 
obtained for Z isomers, but better in terms of 
predictive power. In the case of E isomers, the 
types of most relevant variables which influence 
the fungicidal activity were 2D autocorrelations, 
Galvez topological charge indices, topological 
descriptors and number of halogen atoms and those 
in the case of Z isomer series were WHIM, 
GETAWAY and 3D-MoRSE descriptors. 

ANN and SVM results 
In a preliminary MLR study [15] performed for 
the same series of compounds to find significant 
descriptors for the nonlinear modeling, it was found 
that geometrical size descriptors significantly 
contribute to the fungicidal activity. The descriptor 
Mor19m (which represents the 3D-MoRSE - signal 
19 / weighted by atomic masses) was found to have 
the highest correlation with RIR values for the E 
stereoisomers and the strongest basic pKa whereas 
the T(N..F) (the sum of topological distances 
between N..F) descriptor gave the best statistical 
results for the Z isomers’ dataset. These descriptors 
were not included in the final PLS models because 
the variable coefficient values were close to 0 and 
VIP values did not exceed the value of 1. 
Starting from these descriptors nonlinear ANN 
and SVM models for both E and Z datasets were 
developed. The architectures of the ANN models 
optimized were (1 input + 1 bias) : (2 hidden-layer 
nodes + 1 bias) : (1 output) for ANN_E and (2 
inputs +1 bias) : (2 hidden-layer nodes + 1 bias) : 
(1 output) for ANN_Z, respectively. 
Comparing the results of PLS, SVM and ANN, the 
best model was obtained using the SVM approach 
for the Z isomers. The optimized SVM model 
obtained for the Z isomers’ set has the best fitting 
and predictive power. For this model the data 
over-fitting and model applicability were controlled 
by comparing the root-mean-square errors (RMSE) 
and the mean absolute error (MAE) calculated for 
the training, cross-validation and validation sets. 
The leave-one-out crossvalidation results show that 
the model is stable. The small difference of 5.4% 
between 2

trainingr  and 2
LOOq

 
and the calculated 
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