
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The logic of scientific discovery 
 

ABSTRACT 
The widespread view of science as consisting of 
experiments that test hypotheses obscures what is 
in reality a multi-stage logical process. Erroneous 
or vague resolution of issues at any stage can lead 
to inconclusive or contradictory results. Deriving 
a prediction from a theory or understanding a 
datum or experiment in relation to a theory is 
fraught with difficulties. Thus posing a well-formed 
scientific question and designing a proper study in 
relation to this question is difficult in all but the 
simplest cases. Delineation of objects and system 
boundaries is subject to definitional ambiguities 
and requires specification of experimental frames. 
Proper study execution, data evaluation, and logical 
inference of the meaning of results all have their 
own difficulties. In this study, each of these stages 
of a research project are evaluated to clarify the 
sources of ambiguities and uncertainties and 
suggestions are offered for reducing errors and 
speeding scientific progress. 
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INTRODUCTION 
As presented in introductory science and statistics 
textbooks, the “Scientific Method” and statistical 
“Hypothesis Testing” seem relatively simple. 
However, such apparent simplicity obscures a 
nuanced process that if not carefully observed and 
followed can result in spurious, erroneous or 

conflicting results that do little to advance scientific 
knowledge. As an anecdotal example, how often 
have we heard that eggs or coffee or wine are 
good for us, then bad for us, and then good for 
us… and this is a relatively simple type of 
question. Why are the results of so many studies 
contradictory (e.g., [1]) or later shown to be 
wrong [2]? We can further note evidence for 
confirmation bias or lack of deductive rigor in 
certain fields [3] and the widespread presence of 
basic errors in published papers [4, 5]. The reason 
for these deficiencies, I believe, is that the logic of 
scientific discovery in reality consists of a long 
chain of assumptions, deductions, and inferences.  
It is all too easy for an error to occur at one or 
more steps in this chain and thereby produce an 
inconclusive or even wrong result. Very often, the 
simplifying or auxiliary assumptions are implicit 
and maybe even unconscious, and can likewise 
bias the result. It is useful to lay out these steps 
explicitly to perhaps enhance the discovery process.  
Science consists of both theories and empirical 
questions, and both are fraught with difficulties. 
I use the term “theory” rather than “hypothesis” here 
to distinguish my point from a statistical “hypothesis” 
and also from hypotheses which are logical 
statements describing phenomenon predicted from 
a theory. The steps of inference surrounding a theory 
can be complicated and ambiguous (Figure 1). It 
is possible that more than one theory makes the 
same prediction (Figure 1a), in which case verifying 
the prediction does not allow discrimination 
between theories. For example, Allouche and 
Kadmon [6] showed that multiple versions of the 
neutral model of community organization produce 
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The second link in the chain of logic is intact if 
we conduct the study using a proper statistical 
approach. Perhaps the most common flaw is to 
devise an experiment that is only likely to produce 
a result consistent with a given hypothesis, 
without excluding other possibilities. Such an 
experiment is unlikely to refine the theory under 
test in any meaningful way (see Figure 1a). For 
example, Loehle [9] showed that studies of the 
species-abundance distribution relationship tend 
to only discuss a fit of the model being presented 
rather than comparing it to other possible models, 
and that there are inherent difficulties in acquiring 
a sufficient set of data for such tests. Furthermore, 
since multiple hypotheses can produce the same 
abundance distribution [6] a fit to the data per se 
is not very informative. In other cases, sampling 
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the same species abundance distribution as 
predictions. The best theories predict phenomena 
that are unambiguous, unique, and clearly different 
from a random phenomenon. Atomic theory is 
exemplary in this regard. For example, antimatter 
was specifically predicted before it was discovered. 
This is both a novel prediction and one that is 
uniquely testable (no other phenomenon gives the 
same result). In contrast, a theory may not be at a 
stage of development where specific predictions 
can be made (Figure 1b) [7]. For example, before 
Newton it was understood that the Earth attracted 
objects, but Newton made the hypothesis more 
general (all bodies attract each other) and further 
made detailed predictions of motion possible 
by his invention of the calculus. In some cases, 
(Figure 1c) different experiments attempting to 
test the same theory will lead to different results. 
The only inference that can be made in this case is 
that something somewhere is confounded, either 
by error, experimental device, or sampling regime. 
Finally, (Figure 1d), data may appear to be in 
conflict with a theory. However, it is not always 
clear what should be done about it.  Is it a special 
case? Is the data suspect? Should the theory be 
discarded or merely modified? 
The second stage of scientific enquiry is empirical. 
We may be testing or refining a prediction from a 
theory (Figure 1) or asking an empirical question. 
There are many empirical questions for which no 
deduction from theory is possible. For example, 
we might want to know how well a paint 
withstands salt water, or which fertilizer best 
enhances corn growth. 
For either theoretical or empirical questions, the 
first link in the chain of logic is only intact if 
the question is well-posed [8]. For example, the 
philosophical question, “Why does the universe 
exist?”, is simply unanswerable through scientific 
inquiry, and is therefore meaningless in an 
empirical sense. If a theory is not well enough 
developed or quantitative enough to make specific 
predictions, any attempt to test it will be ill-posed 
because it will not be possible to tell if the 
experimental outcome was or was not consistent 
with the theory. For empirical questions, it is not 
meaningful to ask questions with greater precision 
than our means of measurement, such as wishing 
to know the exact population of wolves in a forest. 

Figure 1. Inference from theories is not necessarily 
straight forward. a) Multiple theories might make the 
same prediction, making observation of that outcome 
not informative. b) It might not be clear what exact 
outcome is predicted by a theory, either due to theory 
vagueness or the need for auxiliary assumptions. 
c) Attempts to test a theory may yield multiple 
incompatible results due to confounding effects. d) When a 
fact contradicts a theory, it may not be clear what to do. 
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area, but verifying that this map area is functionally 
integrated and characterizable is rarely done and 
may not even be possible [12]. 
Divergent metrics pose a unique type of problem. 
A divergent metric is one that varies with resolution. 
The classic case is a fractal object. If we ask about 
the measure of a fractal tree or the surface area of 
a fractal landscape, this is an ill-posed question 
because the measure increases without limit (for 
pure mathematical objects) or without practical limit 
(for physical objects) as it is examined (measured) 
in more detail. In this case we can only specify 
how the measure scales and make scale-specific 
estimates. For such metrics an empirical estimate 
does not represent what was intended (e.g., forest 
fragmentation) unless scale is specified. For 
example, Butler et al. [13] defined forest edge 
from remote sensing data but noted that 
coarsening the data to 90 m pixels resulted in 
almost no edge on their study landscape. The 
definition of “canopy gap” (e.g., [14]) is similarly 
scale dependent but is not usually evaluated with 
respect to scale. Other scale-dependent “objects” 
in ecology include home range, geographic range, 
canopy cover, ground cover, forest vs. woodland 
area, and so on. 
It is next critical that effects are not confounded.  
In the physical sciences, confounding has often 
been minimized by creating experimental systems 
that are close to the ideal systems of mathematics.  
For example, ideal gases or pure substances may 
be experimentally approximated to evaluate physical 
properties or study chemical reactions. Acceleration 
due to gravity can be studied in an experimental 
vacuum, even if the vacuum is not absolute. Air 
resistance can then be evaluated by comparing to 
the vacuum case. Experiments may be shielded 
to reduce extraneous electromagnetic effects. In 
ecology this can be very hard to do. In field studies, 
unobserved processes can easily interfere with 
those being studied. For example, trees in a forest 
may appear to be unaffected by a drought because 
their roots reach the water table, which would not 
necessarily be observed in the typical study. It 
might be assumed that the males with the brightest 
plumage have the best genes, but bright feathers 
can also result from lack of disease, which may 
or may not indicate good genes [15]. Fortunately, 
many of these confounding effects can be statistically

methods or measurement biases can confound 
results. It is therefore critical to explicitly lay out 
the sampling theory and assumptions relative 
to the question at hand. Are measures of the 
experimental population (e.g. age, relative health) 
likely to be normally distributed? Are measurement 
errors additive? These issues are often dealt with 
after data are collected, to the consternation of 
consulting statisticians asked to save the data at 
the end. 
The next link in the chain is intact only if the 
objects of study are unambiguously defined and 
relate properly to the theory or empirical question.  
One of the central concerns of physics and 
chemistry during their early decades was to 
develop standard definitions and metrics for 
objects, substances, and measures. Where pure 
definitions were not possible, physical standards 
(e.g., kg standard, meter stick standard) were 
constructed. In ecology, this is not always done or 
potentially even possible. Let’s say that we have a 
theory about trees (concerning evolution or life 
history, for example), and we wish to test it. If we 
go out to the field, how do we delineate our study 
population and separate trees from shrubs?  
Shrubs can be large and trees can be dwarfed in 
some circumstances. Things that are clearly trees 
can have multiple trunks and thus be shrub-like.  
Is bamboo a tree? We can unambiguously identify 
electricity and magnetism, but what about 
biodiversity or health or intelligence? We have no 
universally agreed upon operational definitions 
for these concepts. Such vague terminology leads 
to subjective and often undocumented decisions in 
each study that may produce ambiguous scientific 
findings, both empirically and in terms of any test 
of a theory. Ambiguous terminology can lead to 
debates that go on for decades (e.g., [10]). 
The next link in the chain is intact only if what is 
measured is what was intended. This may seem 
obvious, but is not so simple in practice. Various 
metrics may exist for some concept (e.g., diversity 
[11]), but researchers often do not provide a clear 
statement as to which one is “really” what they 
mean by the term (e.g. songbird species richness 
may or may not reflect “true” biodiversity, which 
is practically unmeasurable). Studies of ecosystem 
function often face a boundary problem. It is 
simple to draw a line on a map around a study 
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controlled if honest and accurate measures or 
estimates of possible confounding factors are 
taken into account.  
Another type of confounding occurs when 
the process of studying a problem interferes with 
the process being studied. For example, the 
psychological boost that results from being treated 
for an illness leads to the well-known placebo 
effect. The creation of genetically uniform (to reduce 
variation) white lab rats can produce unusual  
and extreme responses to toxins or carcinogens 
and increases their cancer prevalence due to 
homozygosity. Prolonged observation of primates 
in the field can change their behavior if the study 
animals are aware of the observers. The observer 
can directly interfere with the data when subjective 
estimates are made of quantities such as vegetative 
cover (e.g., [16]). When repeated live sampling of 
animals is conducted, some species become very 
trap-shy whereas others like the free meal and will 
seek out the traps. 
The next step in maintaining an intact chain of 
logical inference is to be able to quantify error or 
deviation (Figure 2). In a well-defined measurement 
problem, such as weights of deer, the deviation 
from the mean is a measure suitable for statistical 
testing. In other cases, the investigator may be 
unaware that there is error involved. For example, 
areas of a map may be classified or delineated 
as belonging to various vegetation types. The 
delineation is not without error (e.g., [17, 18]), but 
it is not clear how to account for the error, which 
is thus often ignored, leading to inconclusive 
results [19] because the null of random effect is 
falsely assumed to be due to the treatment. 
Once data are collected or an experiment 
performed, it is critical that the proper statistical 
analysis is carried out (in contrast to merely 
asking the right statistical question, discussed 
above). This involves proper treatment of outliers 
(not getting rid of them without a good reason, for 
example). A proper null expectation may need to 
be formulated. For example, in the absence of the 
effect being studied (say, competition), how many 
species of the same life form or same genera 
would be expected to coexist by chance alone?  
This may not be an unambiguous question and 
may itself require study. One must choose 
between frequentist (e.g., ANOVA) and Bayesian 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
(or other) approaches to the analysis, data 
may need to be transformed, proper statistical 
approaches must be used, assumptions of those 
approaches will need to be verified (e.g., normally 
distributed data, heteroskedasticity), along with 
other considerations (e.g., [20]). 
The final link in the chain of reasoning is to make 
proper scientific inferences based on the results of 
the study. A study could provide modest support 
for a theory or for other empirical findings, thus 
reinforcing current orthodoxy. It could contradict 
existing theory as well. In the latter case, it is 
important to be quite clear about how strong the 
result is. A very weak negative result is not usually 
sufficient to overturn existing theory, and a very 
weak positive result can not be considered strong 
affirmation. Such results might best be qualified 
as either inconclusive or equivocal. It is also critical 
to be precise about the implications of the study. 
Statistical significance does not necessarily equate 
to biological significance. A very small effect in 
an ecological field study does not allow predictions 
to be made. 
The difficulty with a long chain of reasoning is 
that the probability of success goes down as a 
power law function. For example, in Figure 2, 
which has 9 sequential reasoning steps, even if 
you are 95% sure that you have done each step 
right there is only a 63% chance of executing the 
sequence without an error that calls the entire 
result into question. Reviewers and graduate student 
advisors in fact often encounter such cases, where 

Figure 2. For either testing a theory or asking an 
empirical question, there is often a sequence of steps in 
the chain of inference. The study is only as strong as the 
weakest link. 
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sensing) are particularly prone to gaps in the 
prevention of the failures of logic outlined in 
Figure 2. Just as surgeons (and patients) benefit 
from use of a checklist by the surgical team, it 
could be a useful practice to develop and use a 
discovery checklist. A first step in this direction is 
presented next. 
Proceeding through the chain of logic (Figure 2), 
the first and obviously critical issue is the proper 
posing of a scientific question. There is not a 
formal method to be applied to this step. However, 
there are certain things we can check about the 
question being asked to see if it is well-posed. If it 
is a trans-scientific question, such as how much 
social value can be ascribed to a particular species 
or ecosystem, then clearly it cannot be answered 
by a scientific study. We should look for unique 
predictions from a theory (Figure 1a), rather than 
those also derivable from alternate theories 
or from null models. In ecology, an important 
null effect often relates to sampling method 
(e.g., [22, 23]) or scale. If an empirical question, it 
should not require more precision to answer than 
methods can deliver. I showed [24] as an example 
that while a grazing system might exhibit the 
characteristics of a cusp catastrophe stability 
manifold, field detection of the expected properties 
was unlikely due to constantly changing underlying 
conditions (e.g., rainfall, animal stocking). We 
can also ask whether predictions were properly 
deduced from the theory. These questions help us 
evaluate whether the scientific question can, in 
principle, be answered. 
Translating a scientific question into a statistical 
one is not straightforward in ecology [25]. If a 
theory can make specific predictions of relationships 
or distributions rather than just more/less predictions, 
this makes for a more robust test. If the theory 
says (or we want to simply ask if) an intermediate 
level of disturbance enhances plant diversity 
(e.g., [26]) it is necessary to specify spatial and 
time scales, disturbance types and how they will 
be quantified, and how diversity will be sampled 
and quantified (at a minimum). 
How do we ensure that the objects of study are 
unambiguously defined? At one level, if a 
question or theory invokes vague terms such as 
competition, health, or biodiversity, then there 
is an up-front ambiguity that makes it unclear 

a single fatal flaw invalidates an entire study. In 
the next section, methods are discussed to help 
reduce the chance of faulty reasoning during 
scientific discovery in ecology. 
 
Strengthening the chain of logic 
It is not my intention to be negative. If we 
understand the problem, it is possible to overcome 
the stumbling blocks I have identified. In fact, 
looking back on the history of science, many of 
the greatest advances have been responses to the 
very kinds of difficulties I have been describing.  
The transition from natural philosophy to modern 
science was marked by the development of 
the experimental method which helps reduce 
subjectivity and confounding. For example, Galileo 
was successful because instead of asking “why” 
objects fall to earth, he asked and then quantified 
“how” they did so. He even took steps to reduce 
the effects of confounding factors. The double-
blind medical study was established as a standard 
method to overcome the interference of the 
physician with the response of the patient.  Factorial 
experiments and analysis of variance were 
introduced to quantify error, clearly separate 
effects, and reduce subjectivity. Animal model 
based drug trials that are successful lead to 
clinical trials to help determine if the results are 
transferable to humans, reducing the uncertainty 
associated with non-human trials.  
For dealing with issues related to theory (Figure 1) it 
would be helpful to focus a little attention on 
foundational issues. In physics, where phenomena 
can often be studied in isolation and objects (such 
as atoms) are identical, foundational issues have 
received significant attention. While not as simple 
in other fields, such formal treatment of theory is 
possible. For example, a formal null model of biotic 
community organization [21] is being mathematically 
elaborated [6] and deductions developed from it.  
Various techniques have been proposed for 
elaborating and clarifying theory (e.g., [7]). It 
would be helpful if ecology journals were a little 
more interested in such topics. 
For performing empirical studies (Figure 2), 
particular fields have standard techniques for 
certain links in the chain, but not for all types of 
studies or all steps. New topics and new methods 
of collecting data (e.g., internet surveys, remote 
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The issue of error is one that is easy to neglect.  
Without being careful about map classification 
error, it is not possible to properly evaluate 
landscape changes over time [19, 31]. Computer 
models are subject to multiple types of errors, 
including parameter error, model structure errors, 
errors resulting from spatial discretization, numerical 
errors, and others. Error propagation methods are 
available for some but not all of these error types, 
but modelers can be reluctant to admit how wide 
the error bounds on their models actually are, and 
thus often do not show error estimates or confidence 
limits on model output. As noted by Berthouex 
and Brown [32], “A guiding principle of statistics 
is that any quantitative result should be reported 
with an estimate of its error.” Any time the output 
or result is simply a number with no way to 
estimate error, it is time to re-examine the analysis.  
This is good advice for reviewers as well. 
Statistics has become an enormous field. To make 
it even more confusing, there are competing 
paradigms within statistics. In spite of this, there 
are things that can be done to prevent serious 
errors. Use of statistical packages is helpful, but it 
must remembered that the package knows nothing 
about potential outliers, sampling bias, and special 
circumstances, or whether you are doing the right 
analysis. Involvement of a statistician can be 
helpful if one can afford it. Reviews of the data 
analysis by colleagues can also help reduce errors 
of this type. 
Finally, how do we more often make more valid 
scientific inferences based on the results of a 
study? In many studies, the results are modest.  
Some percent of variation is explained. The results 
agree with some past studies and disagree with 
others, for various reasons. Only rarely does a 
study by itself prove or disprove a theory, provide 
an adequate basis for managing an endangered 
species, or identify the ideal diet. At this stage 
what is needed is clear logic and equally clear 
language to state exactly what the results do and 
do not mean. Over-stating the significance of a 
study does not help science progress. 
 
CONCLUSIONS 
The discovery process is not simple. It is subject 
to the difficulty that human logic and powers of 
deduction are imperfect. Furthermore, nature does 

whether any actual measurements properly represent 
such terms. Age-adjusted excess mortality or body 
mass index would be more specific terms than 
health, for example, for a wildlife study. An 
example of an operational definition of a term is 
presented by Godsoe [10] who suggests how the 
species niche concept might be quantified. A 
characteristic of proper terminology is that units 
can be specified and the measurements related 
to a specific experimental, measurement, or 
sampling methodology, such as pan-evaporation 
in agrometeorology. The importance of standard 
metrics and measurements, such as weather 
instruments and heights/times for taking observations, 
cannot be over-emphasized. 
The problem of measured objects that are not 
what was intended or defined is a little trickier. If 
there is a protocol for a measurement, such as the 
appropriate location and structure of a weather 
station plus time of day for observations, then 
compliance with this protocol can verify that the 
data are appropriate. If data values depend on the 
details of sampling (e.g., [22, 23, 27, 28, 29, 30]) 
then results are likely to be inconsistent between 
studies and care is needed to justify and perhaps 
standardize data collection or experimental methods. 
The prevention of confounding is difficult and 
becomes more so in field studies or as time/space 
scales increase. It is helpful to be alert to past 
discussions of potentially confounding factors and 
to not ignore them. It can also be helpful to get 
outside comments on a study plan specifically on 
this issue before commencing the research. 
The reduction of observer effects is so critical that 
certain studies such as drug trials are built around 
double-blind safeguards. Observer interference can 
come into play also in the selection of encountered 
data. For example, when multiple data sets exist 
for species abundance, the choice of which data to 
include or exclude (butterfly data? bird data?  
trees?) opens the chance for observer subjectivity 
to influence the outcome of the study. The same 
can occur when a literature review is written or a 
meta-analysis conducted and certain results or 
points of view are simply ignored. In these cases, 
journal reviewers should insist on completeness 
and documentation of data selection methods, 
though of course it is better if the scientist himself 
is alert to these issues. 
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not always agree that things which we think are 
logical and necessary actually are so. The categories 
we like to believe are obvious (ecosystem, 
diversity, life form) may not be discrete or even 
definable. There is no formula for the general 
case. Some simple types of scientific studies have 
been more or less formalized (e.g., agronomy 
experiments) but even here new techniques open 
up new opportunities to make mistakes. Because 
the entire chain of logic must be intact, it is not 
enough to do part of a study right. In this essay I 
have suggested some techniques for reducing 
error. The general idea is to ask oneself questions.  
Did I miss any confounding factors? Why are 
there outliers? Did I influence the outcome in any 
way? The second general method is to check and 
recheck. Redo the derivation and check the data 
for artifacts. On rereading, are your conclusions 
too grandiose? Finally, getting comments from 
colleagues is invaluable because they are not as in 
love with your ideas as you are. Perfection is not 
possible, but maybe the worst mistakes can be 
avoided. 
For further reading on the discovery process, see 
Loehle, C. 2009, Becoming a Successful Scientist,  
Cambridge U. Press. 
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