
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kinetic law leading to a hyperbolic growth rate for  
protein crystals 
 

ABSTRACT 
In a recent paper, [Barlow D. A., LaVoie-Ingram E. 
and Bayat J. 2022, J. Cryst. Growth, 578, 126417], it 
was demonstrated how reported experimental data 
giving the time dependence for crystal size in the 
case of protein crystals growing from a batch 
supersaturated solution, obey an empirical curve 
in the shape of the hyperbolic tangent. Using this 
empirical law, population balance models were used 
to derive a variety of useful kinetic relationships 
including the relative supersaturation, the 
homogeneous nucleation rate and the crystal size 
distribution function. In this report, we present a 
model which leads to a governing differential 
equation that directly yields a solution for the 
crystal radius as a function of time which is of the 
form of the hyperbolic tangent function. This 
model gives the linear growth rate as a sum of 
incorporation and dissociation terms which are 
described in detail here. The final result has two 
undetermined parameters, the maximum size at 
equilibrium and a rate constant. From other reports 
in the literature, we note how the maximum 
equilibrium size can be related to the initial 
supersaturation. We discuss how the rate constant 
could be determined assuming that it obeys an 
Arrhenius law with a negative activation energy. 
 
KEYWORDS: biocrystallization, crystallization, 
lysozyme, proteins, reaction rates. 

1. Introduction 
Details of the conditions that control the process 
of protein crystallization continue to be an area of 
significant research interest to scientists and engineers. 
Typically grown from aqueous solution, factors 
that determine the final size, shape, structure and 
quality of these crystals are of principle concern. 
Also of interest, is the kinetic behavior of the 
nucleation and growth transformations. 
The subject of this report will be the kinetic nature 
of the linear growth rate, and thus also the crystal 
size, for the batch growth of protein crystals grown 
from aqueous solution at constant temperature and 
pressure. In particular, results from the crystallization 
of lysozyme and beta-lactoglobulin will be 
considered. It is assumed in all cases that activity 
occurred in the intermediate stage of growth and 
therefore, no details concerning the induction period 
or post equilibrium ripening are considered. 
Recent reports give kinetic data for the size of 
these protein crystals during growth that clearly 
obey a hyperbolic tangent law [1, 2, 3, 4]. The 
general form for this expression is 

r(t) = rm tanh(kt)                                                 (1)

where r gives the length of a characteristic dimension 
of the growing crystal at time t, rm is the crystal 
size at equilibrium, that is, the maximum possible 
crystal size, and k is a rate constant. In the 
application of Eq. (1) to the data reported in the 
above mentioned reports, isothermal and isobaric 
conditions are assumed. 
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Recently, Barlow and co-workers [5], fitted Eq. 
(1) to data given by Heijna [2] and Sauter [1]. 
They showed how such an expression could be 
used as a starting point within the framework of 
an often used phenomenological kinetic model for 
crystal nucleation and growth [6, 7, 8, 9, 10] to 
arrive at a time dependent expression for the 
supersaturation which was also shown to accurately 
describe reported experimental data for the 
kinetics of supersaturation decay. Additionally, 
they were able to derive expressions for the 
distribution of crystal sizes and the homogeneous 
nucleation rate. However, no physical justification 
was given for Eq. (1) in the above mentioned 
report but was rather suggested as a topic for 
future work. 
Here, we take up the challenge and find a 
governing differential equation for r(t). Its form 
suggests that a model for the growth rate be made 
up of two terms: an attachment/incorporation rate 
and the other a dissociation rate. This two-term 
approach mirrors commonly used models for 
evaporation such as Hertz-Knudsen [11] and the, 
so-called, ‘relationships’ due to Schrage [12]. 
Such models for the growth rate have also been 
fruitful in simulated studies of protein crystal 
growth [13, 14] and in the description of inorganic 
crystal growth in geology [15]. We give explanations 
here for the incorporation and dissociation terms 
and show that they can be written with only one 
completely undetermined parameter, k. 
Protein crystal growth from solution is most 
effectively accomplished by using additives which 
affect the solubility of the protein. The salt 
concentration and the pH, for example, are found 
to have a profound effect upon solubility, the 
solubility typically being suppressed at high salt 
concentrations [16]. A comprehensive discussion 
of the related salting-in effect can be found in the 
paper by Lee, Kim and Baird [17]. It is assumed 
in the case of the experimental protein crystal 
growth experiments cited here that all were carried 
out in the range of optimal salt concentration, that 
is, within the so called ‘crystallization slot’ [18]. 
Additionally, we expect that they were also carried 
out in an optimal range of the protein 
concentration-temperature phase diagram [19] and 
that the solution pH was adjusted by way of a 
buffer. Other supplements used to enhance the 
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growth process include various types of gel which 
were used in two of the cases cited here [3, 4]. 
 
2. The governing equation 
One can show by direct substitution that Eq. (1) is 
a solution to the first order, ordinary differential 
equation, 

2dr A Br
dt

= − ,                                                        (2)

where A and B are constants. Eq. (2) gives an 
expression for the linear growth rate. Our required 
final conditions are 

lim 0t
dr
dt→∞ =  ,                                                       (3)

lim ( )t mr t r→∞ = ,                                                (4)

and an initial condition is 

r(0) =0,                                                               (5) 

where rm is the crystal size at equilibrium. It 
should be noted that this model assumes that the 
volume of the individual crystal can be described 
by the product of the cube of a lone dimensional 
coordinate, that is, r3, and a shape factor. For example, 
in the case of a sphere, the shape factor is 4π/3. 
The conditions imposed by Eqs. (3), (4) and (5) 
lead to values for the constants A and B and thus 
the final form for the growth rate equation is 

2 m
m

dr kk r r
dt r

= − .
                                                   (6)

This result, along with Eq. (1), implies that 

2s ech ( )m
dr r k kt
dt

= .                                              (7)

Our interpretation of Eq. (6) is that the two terms 
on the right represent rates of incorporation and 
dissociation from the crystal face. The term on the 
far right of Eq. (6) represents the rate of dissociation. 
The dissociation term is proportional to the square 
of r and thus grows until dr/dt = 0 at equilibrium. 
Our physical justification for the dissociation term 
comes from the claim by Pauling that during the 
sublimation of crystals in air the rate of 
evaporation is directly proportional to the surface 
area of the crystal [20]. We hypothesize that an 
action of this sort occurs for protein crystals in 
solution and thus k = kog where ko is a detachment 
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where ρ is the crystal density and no is the total 
number of homogeneous nuclei created during the 
batch growth run. 
Albeit no would not be trivial to determine 
experimentally, a reasonable estimate for no would 
be the number of crystals per unit volume in the 
vessel at equilibrium. With Eq. (8), all of the 
parameters in Eq. (6) are determined with the 
exception of k. 
 
3. The rate constant 
The rate constant, k, was determined previously from 
a fit of Eq. (1) to experimental data in Reference [5] 
for two reported cases of protein crystal growth 
from batch solution, one for lysozyme [2] and the 
other for beta-lactoglobulin [1]. We fit Eq. (1) to 
additional data sets found in the literature here [3, 4]. 
These data, for lysozyme crystallization, are depicted 
in Figures 1 and 2. The rate constants from all 
four cases are given in Table 1 along with their 
corresponding temperatures. It is interesting to 
note from the data in Table 1 how the rate 
constants increase as the temperature decreases. 
The growth conditions were all different for each of 
these four runs. However, similar behavior has been 
 

frequency and g an area form factor. For the case 
of a sphere, g = 4π, thus leading to the final form 
of the dissociation rate as (4πko /rm)r2. 
The first term on the right of Eq. (6) gives the 
incorporation rate. The incorporation rate is 
therefore constant, yet directly proportional to the 
equilibrium size of the crystal. This term can be 
related to the initial supersaturation Δc, where 
Δc = co - cs. Here, co is the protein concentration 
at the start of the growth run and cs its equilibrium 
solubility. Several workers have shown that the 
maximum crystal radius rm can be related to the 
cube root of Δc [21, 22]. This would imply that 
the incorporation rate is proportional to the cube 
root of the initial supersaturation. This result seems 
physically appealing as it predicts a very slow 
attachment process at low initial supersaturations 
yet the increase of this rate with Δc is only 
approximately linear for small values of Δc, 
becoming almost logarithmic as Δc is increased 
further. In other words, there is a sort of upper 
limit to the attachment rate as Δc is increased, a 
result to be expected as it is well known that these 
crystals cannot be grown to arbitrarily large sizes. 
Of course the magnitude of Δc is already bounded 
by the requirement of maintaining a solution 
within the optimal region of the protein 
concentration-temperature phase diagram. The 
full expression for rm taken from [21] is 

Figure 1. Plot of data for lysozyme crystal size vs. time for a case of batch growth. Data point values 
are from Reference [4]. The reported linear size was taken to be a diameter and converted to a radius 
here. The curve is a fit of Eq. (1) to the data. The maximum crystal size was estimated to be 670 µm. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
attachment of a protein molecule to a crystal facet 
and ΔH is the enthalpy of solution of the protein. 
They interpreted (EA - ΔH) as the effective 
activation energy, Eeff , for the decay of the 
supersaturation. It could be positive or negative 
depending upon the signs and magnitudes of EA 
and ΔH. Whereas the dilatometry experiments 
were incapable of separating the effects of EA 
from those of ΔH, the data in Table 1 indicate that 
the linear growth rate constant, k, increases with 
decreasing temperature, consistent with a negative 
activation energy. 
This implies that the protein absorbs heat to denature 
somewhat upon dissolving. According to Munk [24], 
‘as temperature increases the ensemble of protein 
molecules takes on more random configurations.’ 
It is well known that protein crystallization is only 
favored when the solute molecule is in a non-
denatured state. Lowering the temperature then 
causes the ensemble of molecules to consist more 
of one identical compact tertiary structure--the so 
called, native state. Current research seems to 
indicate that the folding pathway to the native 
state can be complex and consist of several local 
minima [25, 26]. This leads us to suggest that, as 
more protein molecules achieve their native state, 
these molecules are able to take their place in the 
growing crystal with greater ease thus increasing 
the rate constant for growth. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reported for protein crystals grown at different 
temperatures from identical solutions. In protein 
crystal growth dilatometry experiments, which were 
sensitive to the supersaturation, Caraballo, Baird 
and Ng [23] determined the rate constant for the 
time rate of decay of the supersaturation. Using 
mass balance considerations, they showed that 
this rate constant involved a ratio, the numerator 
of which was a rate constant for the linear advance 
of a facet, and the denominator of which was the 
protein solubility. If the temperature dependence of 
both the linear growth rate constant and the 
solubility were assumed to be proportional to 
Arrhenius/Boltzmann factors, their ratio took the form 

( )exp[ ]AE H
RT
−Δ

−  ,                                                 (9)

where EA is the activation energy governing the
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Figure 2. Plot of data for lysozyme crystal size vs. time for a case of batch growth. Data point values are from 
Reference [3]. The reported linear size was taken to be a diameter and converted to a radius here. The curve is a 
fit of Eq. (1) to the data. The maximum crystal size was estimated to be 1060 µm. The early time region, not 
described well by Eq. (1), is likely caused by the diffusion limiting nature of a two-step mechanism also 
observed in the growth cases reported in References [1, 2] and discussed and described further in Reference [5]. 

Table 1. Rate constants and temperatures from four 
different batch crystal growth cases. Rate constants 
come from a fit of Eq. (1) to reported experimental data. 

Protein k (hr -1) T (K) 
Lys. [2] 0.528  [5] 281 
β-Lac.  [1] 0.246  [5] 293 

Lys. [3] 0.0185 295 
Lys. [4] 0.0027 298 
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This observation suggests the study of protein batch 
growth experiments under identical conditions of 
solution composition but at a variety of temperatures 
within a range of interest. If an Arrhenius model 
holds, then the values of k determined by fitting 
Eq. (1) to crystal size data should yield values for 
the slope, Eeff/R, and the intercept, when plotted in 
Arrhenius form with lnk versus 1/T. 
 
4. Conclusion 
In this paper we show how a recently reported 
empirical relation can be derived from 
phenomenological considerations. The expression 
under consideration gives the crystal size over time 
during batch growth in terms of a hyperbolic tangent 
function. It is shown here how this result can be 
arrived at from a differential equation involving 
the growth rate which is given by two terms: one 
which gives the rate of dissolution from the 
crystal face, the other, the rate of incorporation.  
The rate of dissolution is taken to be directly 
proportional to the surface area of the growing 
crystal. The incorporation term is constant yet 
proportional to the maximum crystal size. We 
show how the maximum size at equilibrium can 
be related to quantities that could be measured or 
estimated for a particular batch growth run. The 
result involves an undetermined rate constant 
which we suggest can be written in Arrhenius 
form with a negative activation energy. Then, 
isothermal protein crystal growth runs, with the 
same solution conditions at different temperatures, 
should yield values for lnk versus 1/T that fall on 
a straight line and thus yield a value for the 
activation energy and the pre-exponential factor. 
Such experiments are left as future work. 
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