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Brain tumor growth models 

ABSTRACT 
Primary brain tumors, benign and malignant, 
constitute a great number of very different tumors 
from the point of view of pathology and neuro-
oncology. Astrocytomas are the most frequent 
ones, with various grades of malignacy, from 
pilocytic astrocytoma (grade I) to glioblastoma 
(grade IV), the most malignant brain tumor. The 
incidence of brain tumors has been increased, and 
no cure exists for them. The use of mathematics 
and computer models is useful for hypothesis 
generation on cancer etiology, evolution and 
prognosis. In this review we try to analyze some 
of the different growth models applied from 
mathematics to the biology of brain tumors, like 
continuum models, the cellular automaton model 
and the agent-based model. 
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1. INTRODUCTION 
The incidence of primary brain tumors is about  
8-10/100.000 people per year. Despite all the 
efforts to understand the characteristics of brain 
tumors, their incidence has not been reduced  
nor has the median survival time. Glioblastoma 
multiforme is one of the deadliest tumors, with a 
 

median survival time of 8-10 months. Due to the 
invasive nature of these tumors, after surgical 
removal, the remaining tumor cells in the 
surrounding brain parenchyma cause tumor 
recurrence. These tumor cells usually develop 
resistance to the therapies.  
There are many advantages using mathematical 
and computing models in biology. A mathematical 
model combined with computational technologies 
is useful for hypothesis generation and data 
integration. In addition, the in silico experiments 
are cheaper than the in vivo or in vitro ones, and 
they also have faster results. In this review we try 
to analyze some of the different growth models 
applied from mathematics to the biology of brain 
tumors. 
 
2. Continuum models 
The first models developed for describing tumor 
growth were continuum models. They used 
differential equations to describe the volume or 
the cell density. A general expression to describe 
the growth of a biological organism was proposed 
by Ludwig von Bertalanffy. The idea is that the 
volume of the organism depends on the rate of 
growth and the rate of degradation. When we talk 
about tumor growth, the rate of growth can be 
described by proliferation and synthesis and the 
rate of loss can be described by death and 
degradation. The equation is in the form: 

 

 

Where V is the tumor volume, a is the rate of 
growth and b is the rate of degradation. From this 
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general equation, two particular cases have been 
successfully used to describe the tumor growth: 
The logistic growth equation (α=1; β=2) and the 
von Bertalanffy growth equation (α=1; β=2) 
(Figure 1).  
In 1825, Gompertz described a new model, 
currently one of the most often used. The 
Gompertz equation can be written as: 

 

 

From 1995, a number of papers have been 
published using the reaction-diffusion equations 
to describe the glioma growth [1-3]. The equation 
used by these models can be written: 
 

 
 

This equation describes how the tumor cell 
concentration (c(x,t)) changes because of the 
proliferation (ρ) and the diffusion coefficients 
(D(x)), the last one representing the motility of the 
tumor cells.  
More recently, Swanson et al. [4] have used the 
same model, with the particularity that they have 
taken into account the heterogeneity of the brain 
tissue. Particularly, grey and white matter. They 
have defined the same net proliferation rate for
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both grey and white matter, but the diffusion 
coefficient is larger in white than in grey matter. 
The scenery of the model is a 3-dimensional 
representation of the human brain defined by the 
BrainWeb Atlas (http://www.bic.mni.mcgill.ca 
/brainweb). They assumed that the tumor is 
detectable when it has reached a size equivalent to 
a sphere, with an average diameter of 3 cm and 
that death occurs when the volume reaches an 
average diameter of 6 cm. 
The same group has made improvements on the 
previous model, concerned by the difficulty of 
success with chemotherapy in the treatment of 
gliomas due to the heterogeneity in drug delivery 
to the different kind of brain tissues [5]. They 
have started with a model with a homogeneous 
drug delivery. Here, the chemotherapy is viewed 
as a loss term, proportional to the number of 
tumor cells and to the strength or amount of 
therapy. With this model, they have seen that even 
with a very effective type of chemotherapy, the 
tumor continues to grow. To be more realistic, 
they have implemented another model, taking into 
account that the drug delivery to the white matter 
is much less than that to grey matter because of 
the capillar density. To model it, they 
implemented the chemotherapy as a function of 
time and space, making it more efficient in grey 
matter in proportion to the ratio of capillar 
density. The result was that the tumor could be 
eradicated from grey mass while tumor cells in 
white matter escaped from the chemotherapy, 
continuing with the tumor growth. 
Another example of continuum model can be seen 
in Kirkby et al. [6]. They attempted to create a 
mathematical model of tumor growth in patients 
with glioblastoma, in order to predict survival. 
They wanted to extract biological information 
from clinical data. They also investigated the 
effects of the different treatments. Their model 
represents two kinds of cells: normal and tumor 
cells. They considered the patient death to be 
when the number of undamaged normal cells is 
below a threshold. The rate of damage of normal 
cells is proportional to the number of normal cells 
and to the number of tumor cells. The number 
of normal and tumor cells are modeled by 
differential equations. To model the radiotherapy, 
they assumed that a number of exposures are 

 dV 

dT 
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Figure 1. Solution of the Bertalanffy equation with 
a=4, b=1/3 and V0=100. 
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attracted by a high concentration of nutrients or 
by other tumor cells. In order to model the motion 
of the tumor cells they assumed that in absence of 
forces, the tumor cells move in a random way; 
this phenomenon is described by a diffusion 
equation. In order to model the chemotaxis, they 
used the Keller-Segel equation. They also 
modeled the nutrient concentration as a diffusion 
subtracting the consumption of the tumor cells. 
The model presents a higher nutrient consumption 
at the surface of the spheroid that acts as a source 
of tumor cells due to the high level of 
proliferation.  The mobile tumor cells also act as a 
source of chemoattractant modeled with a 
diffusion equation. In their discrete approach, they 
did not model the homotype chemotaxis with a 
diffusion equation, they considered that each 
mobile tumor cell leaves a trail that other cells tend 
to follow. They implemented this phenomenon by 
multiplying the probability of an invasive cell to 
jump to a certain place, if this place had been 
occupied by another tumor cell before.  
 
3. Cellular automaton model 
The cellular automaton is a computer model 
composed by grids of cells. Each cell can be in a 
finite number of states. A neighborhood is defined 
for each cell. The state of a cell at a certain moment 
is determined by some rules depending on the 
previous state of this cell and its neighborhood. 
Kansal et al. [9] wanted to investigate the brain 
tumors as a “self-organizing complex dynamic 
system”. They modeled the Gompertzian growth 
with a cellular automaton. The volume of the 
tumor coincided with the Gompertz model on 
each time point. With the simulation, they could 
obtain important criteria such as the fraction of 
tumor which is able to divide, the non-
proliferative and necrotic fractions, and the rate of 
growth. Instead of using square or cubic lattices, 
they used a Voronoi tessellation (Figure 2A) in 
order to avoid possible artificial anisotropies. The 
lattice was designed with a variable grid size and 
the density change with the radius of the tumor. 
The sites near the tumor center have higher 
density than the sites at the edge. It represents 
an ideal tumor consisting on a spherical mass 
composed by different shells. The core is 
composed by necrotic cells, another shell with 

applied instantaneously and that the same fraction 
of tumor cells survive each exposure. All the 
normal cells survive the radiotherapy treatment. 
The tumor is considered sterilized if the number 
of tumor cells is less than one after exposure. If 
the tumor is not sterilized, then the model of 
tumor growth re-starts with the remaining normal 
and tumor cells. In order to model a population of 
patients, they chose the parameters of the model 
distributed statistically. For each patient, there 
were 6 parameters to be established:  the number 
of undamaged normal brain cells at presentation, 
the doubling time of the tumor, the rate constant 
for damage to normal cells, the delay before 
treatment is started, the critical size of undamaged 
brain to die, and the fraction of tumor cells that 
survive radiotherapy exposure. They selected the 
patients that were going to be treated, excluding 
the patients that were deteriorated or that were not 
going to benefit from the treatment. They 
calculated the survival time at the moment of the 
presentation and at the moment of the start of the 
treatment, and if those times were over a 
threshold, the patient was selected for treatment. 
The survival time calculated with their model 
coincides with the survival data of the 
Addenbrooke’s Hospital.  
Discrete models consider cells individually and 
can simulate their interactions. As described by 
Deisboeck et al. [7]: “A discrete model is often 
comprised of several states and a number of 
transitions...”. A hybrid approach, combining 
continuum and discrete techniques can have all 
the advantages of both techniques and describe 
the system at all levels. An example of this is the 
model developed by Sander and Deisboeck [8]. 
They combined the two techniques in their model 
based on their clinical studies. In three-
dimensional in vivo experiments, they noticed that 
tumors grow following a pattern. In the model, 
there is a proliferative core where the tumor cells 
are born and then they spread to the periphery and 
become invasive more than proliferative cells. 
They assume that the motion of the invasive cells 
is due to the chemotaxis. In their experiment, they 
model two kinds of chemotaxis: the first one was 
caused by the different concentrations of nutrients 
in the tissue, and the second one by the homotype 
attraction. Therefore, the tumor cells can be 
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algorithm is run during a pre-determined number 
of time steps and the second population is 
checked to determine the survival.  
Six years after, Gevertz and Torquato [11] 
improved the first model of Kansal et al. [9]. They 
wanted to model the vascular growth of a brain 
tumor with a cellular automaton model. For the 
vascularitation, they took into account the state 
of three proteins: vascular endothelial growth 
factor (VEGF), angiopoietin-1 (Ang-1) and 
angiopoietin-2 (Ang-2). VEGF is responsible for 
the formation of an immature vascular network, 
and Ang-1 acts towards its maturation and 
stabilization. Ang-2 competes with Ang-1 and is 
responsible for the vessel regression. Vessels are 
designed as cylinders of radius one lattice. In 
order to perform an optimum vessel network and 
supply the maximum number of cells with the 
minimum number of vessels, there are 3 rules to 
construct the network: Vessels at the same angle 
can not penetrate one in the space of the other. A 
maximum of 2 vessels can intersect at one lattice 
(if a third vessel is going to intersect at the same 
point, the length of the vessel should be 
truncated). A vessel can not be created if it is not 
going to supply an unvascularized cell. The places 
at which to start a vessel are selected randomly,
  

cells in the G0 cell-cycle state, and the last shell 
with proliferative cells (Figure 2B). The 
proliferative cells are evaluated to decide whether 
they will divide with certain probability. If the cell 
is selected to proliferate, there is a search for 
space for the new cell on the shell for proliferative 
cells.  
In a subsequent paper [10] they have extended 
their model in order to analyze heterogeneous 
tumors in which sub-populations possess different 
growth-rates. This model presents two sub-
populations: the primary one, present from the 
beginning and a secondary one arising from a 
mutation and with the difference of the cell-
doubling time. They aimed to study the 
probability of survival of the secondary strain 
depending on the relative advantage in growth 
rate and its starting volume. The secondary 
population has a mutation related to the cellular 
division but the same nutritional needs and 
response to mechanical pressure. The algorithm of 
the previous work is used at the beginning until 
the tumor has a pre-determined radius. Then, a 
single random surrounding cell is mutated from 
the primary to the secondary strain. They have 
also studied the cases when two or more 
contiguous cells are mutated. The proliferation 
 
 

Figure 2. A) Example of a Voronoi Tessellation. B) Representation of a tumor on a 
Voronoi Tessellation; with a necrotic, a non-proliferative and a proliferative shell. 
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Aubert et al. [13] studied the diffusion properties 
of glioma cells during migration. They did a 
previous in vivo experiment with a human glioma 
cell line (GL15). They took 4 pictures at different 
stages and studied the density profiles and the 
velocity and paths of the migrating cells. For the 
computering model, they chose the hexagonal 
lattice because of its isotropy. The center of the 
lattice was occupied by the glioma cell spheroid. 
From this center, an unlimited number of cells 
were going to be ejected. When there was a free 
position in the hexagons surrounding the center, it 
was occupied by a tumor cell ejected from the 
center. They did not take proliferation into 
account because they considered that it was 
canceled by apoptosis.  To model the attraction 
between tumor cells, they favored the movement 
to positions adjacent to an occupied cell. They 
also modeled the effect of the inertia, so the cells 
had to move in the same direction, allowing only 
the movement to the three hexagons in the 
forward direction. 
Two years later, they improved their previous 
model to add some characteristics [14]. They 
wanted to study the hypothesis given by some 
studies that the tumor bulk acts as a 
chemorepellent due to the toxic factors produced 
by necrotic cells. First of all, they decided to 
change the tessellation because of the problems of 
symmetry of the hexagonal one. They wanted to 
use a Voronoi tessellation but they wanted to 
preserve the number of neighbors for each cell 
near to six. The solution was to start with a 
hexagonal tessellation, and perturb the position of 
each cell, obtaining a Voronoi tessellation with 
polygons of comparable size. They modeled the 
chemorepellent action of the tumor bulk with a 
central source of toxic and a diffusion coefficient. 
They assumed that the migration is in the 
direction of decreasing gradient of the chemo-
repellent. The chemorepellent concentration on 
the place where the cell is, and the concentration 
on the possible places to go, were evaluated, and 
the probability of a tumor cell to migrate to that 
place was proportional to the difference between 
them. When a cell was selected to move, one of 
the neighboring places was randomly selected; the 
cell only moves if this place satisfies the rules of 
cell interaction and chemorepellent action.  

and a vessel is created at that point unless one of 
the rules is violated. There are three types of cells: 
proliferative cells, non-proliferative/hypoxic cells 
and necrotic cells. Hypoxic tumor cells produce 
VEGF that is diffused throughout the tissue. Ang-
2 is expressed in areas of vascular remodeling, 
with vessels associated with tumor tissue. Ang-1 
is expressed in the healthy tissue. The state and 
relationships of these proteins are established by 
differential equations. The main goal was to study 
the relationship between the levels of the 
compounds and tumor growth. The levels of 
VEGF, Ang-1 and Ang-2 are used to decide what 
happens with the vessels at each lattice vertex. 
The vessel can regress or sprout in the direction of 
greatest VEGF concentration.  
Schmitz et al. [12] attempted to study the 
treatment resistance in glioblastoma. They have 
improved the first model of Kansal et al. [9]. The 
original model had 3 parameters: the rate at which 
the proliferative cells divide, the nutritional needs 
of the non-proliferative and proliferative cells, and 
the response of the tumor to mechanical pressure 
within the skull. In the new model, they have 
added three more parameters: the sensitivity at 
each instance of treatment for the proliferative and 
the non-proliferative cells, and the mutational 
response of the tumor to treatment. They began 
the simulation with a spherical tumor of 4 mm 
radius, representing a glioblastoma after successful 
surgical resection. The proliferation algorithm 
was similar to the one in the original paper [9]. 
The algorithm was performed for 4 weeks of 
tumor development simulation, and then a 
treatment algorithm was added. In the treatment 
algorithm, every proliferative cell was checked to 
decide whether it had been killed by the treatment 
with a given probability. If a proliferative 
automaton cell dies, it is converted into a healthy 
cell. Then the non-proliferative cells were 
checked with another probability of being killed 
by the treatment because it is known that 
quiescent cells can avoid the effects of 
chemotherapy. At this step, the non-proliferative 
cells that survived were checked to see whether 
they could be converted into proliferative cells. 
Finally, the proliferative cells were checked to 
determine whether they would suffer a mutation 
that changes its treatment resistance.  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

40 María P. Arrastia & Javier S. Castresana 

each tumor cell is represented by an agent. They 
can be divided into different subpopulations with 
different behaviors. With each program iteration, 
the cell analyzes the environment (nutrients, 
oxygen or different molecules) and the situation 
of the rest of the cells, and decides what to do in 
order to survive in collaboration with the others. 
For example, the cell can decide to migrate, 
proliferate, be quiescent or die.  
A lot of package software exists for implementing 
an agent-based model. One of them is Netlogo. In 
this program we can find an example of tumor 
growth model. The model starts with a stem cell 
represented in black color (Figure 3A). The stem 
cell can be divided into two stem cells or into one 
 

4. Agent-based model 
One of the most used hybrid models is the agent-
based model. An agent-based model is a 
computational model used to simulate the 
interactions between different agents and also 
between the agents and the environment. Once the 
characteristics of the environment are defined, the 
agents can take decisions depending on the 
environment and on the characteristics of the rest 
of the agents. With this model, it is easy to see 
how the actuation of each agent can influence on 
the whole system fitness. This model has been 
used in biology to study the behavior of different 
populations of animals or for epidemics. When 
this model is used to model the growth of a tumor, 
 

Figure 3. A) First stem cell. B) First tumor stage. C) Evolution of tumor growth. D) First transitory cells start to die. 
E) A metastatic colony of cells appears. F) The young transitory cells have been killed. The model itself and for the 
NetLogo software can be checked at: -Wilensky, U. (1998). NetLogo tumor model. http://ccl.northwestern.edu/ 
netlogo/models/Tumor. Center for Connected Learning and Computer-Based Modeling, Northwestern 
University, Evanston, IL. - Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for 
Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 
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importance of tumor cell invasion that makes it 
impossible to remove all of the tumor, with bad 
consequences for patient diagnosis. They developed 
an agent-based model in which tumor cells are 
agents interacting each other and with the 
environment. This model aims to simulate the 
behavior of small tumor cell colonies undetectable 
by a microscope.  They developed a previous  
in vitro assay in order to assess the behavior of the 
tumor cells in the presence of a heterotype 
attractor. Their observations were used to model 
the capabilities of the in silico cells in the agent-
based model by giving them the ability to 
recognize the best place to live depending on the 
environment characteristics such as blood vessels 
or toxic metabolites. The proliferation is modeled 
as an stochastic process in order to represent the 
fact that a favorable location is not enough of a 
condition for proliferation. They also modeled the 
mechanical resistance of the tissue for the cells to 
migrate. The environment is a 2D torus of grid 
lattice that contains 50x50 locations to represent a 
‘‘2D’’ virtual brain tissue slice. At the beginning, 
the nutrients are distributed as a gaussian 
distribution and they are non-replenished. At the 
initial state, the model has 10 agents representing 
tumor cells. These cells are placed on the quadrant 
opposite to the maximum level of nutrients. At 
each moment, the level of nutrients is decreased 
proportionally to the number of cells at each 
location. A level of toxicity metabolites is also 
represented at each location and is increased 
proportionally to the number of cells at that 
location. The tissue presents a mechanical 
confinement, representing the energy that a cell 
consumes migrating through the tissue, and it is 
different at each point, resembling a gaussian 
distribution with the maximum resistance at the 
maximum level of nutrients. At each iteration, a 
cell is selected and evaluated for performing three 
possible actions: migration, proliferation or death. 
Cell death has a probability distribution 
proportional to the level of toxicity at its location. 
If the cell is not selected to die, then the cell is 
evaluated to proliferate with a probability that 
increases with higher levels of nutrient, but only if 
the cell is part of a cluster and if it is on the 
surface of the cluster. If a cell is selected to 
proliferate, then a daughter is created and posed in 
the same location. If the cell is not selected to 

stem cell and one transitory cell (Figures 3B and 
3C). The transitory cells die at a certain number of 
divisions. Necrotic cells are represented in black 
(Figure 3D). They also represent metastasis with a 
colony of transitory cells advancing to distant 
places (Figure 3E). You can play with the model 
by killing transitory or stem cells, modeling 
processes as chemotherapy, in which transitory 
cells are killed but stem cells continue expanding 
the tumor. In Figure 3F, the young transitory cells 
have been killed. 
One of the first studies of cancer using an agent-
based model was developed by Maley and Forrest 
[15]. Based on the idea that different cancers 
come from a different set of mutations in the cells, 
they saw each tumor as unique, thereby needing a 
specific treatment. With their agent-based model 
they aimed to study the probability of developing 
a cancer and to also present a hypothesis 
regarding the genetic nature of cancer. They 
studied two important characteristics of cancer: 
genetic instability and uncontrolled proliferation. 
They developed a two-stage model (precancerous 
and malignant), so they needed at least six rate 
parameters: the rate of cells changing from normal 
state to precancerous state, the rate of 
reproduction of precancerous cells, the rate of loss 
of precancerous cells, the rate of cells changing 
from precancerous to malignant state, the rate of 
reproduction of malignant cells, and the rate of 
loss of malignant cells. They chose a two-
dimensional, discrete-event model; each cell was 
represented by an agent and stored the following 
information: the number of selective mutations it 
has suffered, the number of neutral mutations, 
whether or not it has suffered a mutation that 
increases its mutation rate, and the number of 
time steps until it divides. On each iteration, 
approximately half a day, the population of cells 
was updated serially. The proliferation has a 
normal probability distribution with a mean of 
8 time steps (4 days) and standard deviation of 
2 time steps (1 day). Each selective mutation has 
the effect of increasing the replication rate of the 
cell. They simulated 74 years, approximately a 
human life and corrected the parameters until the 
model fitted with the real probabilities for humans 
to develop a cancer in their life. 
Mansury et al. [16] wanted to study the spatio-
temporal migrations in a brain tumor due to the
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relationship between GJC and migration, they also 
know that the fastest cells are the ones with least 
connexion. According to these statements, they 
have defined the payoffs of the interactions of 
each kind of cells in terms of connexion, 
proliferation and migration, and they have 
incorporated these payoffs into the probabilities of 
proliferation and migration in the decisions made 
by the agent-based model.  
Zhang et al. [18] implemented a multiscale agent-
based brain tumor model, not only in the cellular 
but in the molecular scale. Each cell is equipped 
with an epidermal growth factor receptor (EGFR) 
network in order to study whether or not it could 
be responsible for the decision of a cell to migrate 
or proliferate by activating the signaling protein 
phospholipase Cγ (PLCγ). 
It is a three-dimensional model: a grid with 
100x100x100 points each one with a level of 
TGFα, glucose and oxygen tension. The TGF and 
glucose are consumed by the cells and replenished 
depending on their diffusion coefficient. There 
can be only one cell in each grid position. The 
model is initialized with five hundred tumor cells 
at the center of the cube opposite to the one with 
the highest level of glucose, TGFα and oxygen 
tension. To describe the EGFR network, each 
tumor cell has four layers: the external space, the 
cell membrane, the cytoplasm, and the nucleus. 
The EGFR network is modeled by differential 
equations. As a result of the interactions in the 
network, a level of concentration of PLCγ is 
obtained, and depending on whether it excesses a 
threshold or not, the cell decides to migrate, 
proliferate or be quiescent coinciding with the 
results from previous works. Cells enter the 
reversible quiescent state if they do not find a 
location to migrate or proliferate, or depending on 
the levels of glucose concentration and 
Phosphorylated active dimeric TGFα-EGFR cell 
surface complex.  
In 2009, the same group extended the three-
dimensional multiscale model [19]. The 
environment represents a slice of brain tissue by a 
100x100x100 lattice, with a replenished nutrient 
source as a blood vessel that supplies glucose, 
TGFα and oxygen. At the beginning, these chemo-
attractants are dispersed by normal distribution. 
There can be five different cell clones, whose 
 
 

proliferate, then it is evaluated to migrate, only if 
it is placed on the surface of a cluster. To find the 
best location to migrate, the cell implements two 
different algorithms. A global algorithm evaluates 
every position in the tissue, depending on the 
number of cells in that location (cells prefer to be 
with other cells because tumor cells produce 
protein growth factors, but they avoid a location 
that is overcrowded), the number of cells in the 
current location, the distance between the two 
locations, and the energy costs of going from one 
point to the other depending on the mechanical 
confinement. The other algorithm is local and 
evaluates only the cell neighborhood in order to 
find the exact location to move to. The evaluation 
is based on the nutrients, toxicity, mechanical 
resistance and the number of tumor cells in the 
current and the new location to migrate.  
Four years later, Mansury et al. [17] improved 
their model by introducing the evolutionary game 
theory. The game theory studies the strategies in a 
situation when the decision of an agent influences 
the fitness of the others. This theory was applied 
to biology with the name of “evolutionary game 
theory”. John Maynard Smith won the Crafoord 
prize for his work in this field. In this model, there 
are two types of tumor cells. Type A are more 
proliferative cells and type B are more migrative 
cells, although type A cells can also migrate and 
type B cells can also proliferate. These cells must 
cooperate when they are in a group in order to be 
stronger but at the same time, they have to 
compete for the locations with more nutrients. 
The interactions among cells means different 
benefits or losses (payoffs) depending on the type 
of cells that are interacting. They define three 
kinds of payoffs: proliferative capability, cell-cell 
gap-junction communication (GJC), and migratory 
capability. According to in vivo experiments, they 
knew that interactions among proliferative cells 
involve stronger gap-junction communication, so 
they modeled the highest levels of communication 
when there was an interaction between type A 
cells followed by an interaction between type A 
and type B, and finally type B with type B. They 
also know that when there are strong GJC levels, 
proliferation is reduced. It means that an 
interaction with a type A cell will end in a high 
reduction of its proliferation. For a study on the 
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difference is their EGFR receptor density, for 
modeling some results observed from their 
experimental data. They have observed that cell 
clones with higher EGFR receptor density are 
more aggressive and they can move faster along 
the environment’s least resistance because of 
higher search precision. They also demonstrated 
that cell clones with high EGFR receptor density 
have a lower proliferation rate. Depending on the 
concentration level of TGFα at the cell location, 
the cell can move to a different defined 
neighborhood, increasing the spatial permission 
with higher levels of TGFα concentration. It 
reflects the progressive loss of tumor cell 
adhesion. Each cell clone type can mutate only to 
the next type with higher EGFR receptor density. 
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