
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The therapeutic benefits of perceptual learning 
 

ABSTRACT 
The modern field of perceptual learning addresses 
improvements of sensory and perceptual functioning 
in adult observers and provides powerful tools to 
ameliorate the effects of neurological conditions 
that involve a sensory or attentional deficit. While 
the sensory systems were once thought to be 
plastic only during early development, modern 
research demonstrates a great deal of plasticity in 
the adult brain. Here we discuss the value of 
perceptual learning as a method to improve sensory 
and attentional function, with a brief overview of 
the current approaches in the field, including how 
perceptual learning can be highly specific to the 
training set, and also how new training approaches 
can overcome this specificity and transfer learning 
effects to untrained tasks. We discuss these in the 
context of extant applications of perceptual learning 
as a treatment for neurological conditions and how 
new knowledge of mechanisms (including attention, 
exposure based learning, reinforcement learning 
and multisensory facilitation) that allow or restrict 
learning in the visual system can lead to enhanced 
treatment approaches. We suggest new approaches 
that integrate multiple mechanisms of perceptual 
learning that promise greater learning and more 
generalization to real world conditions. 
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INTRODUCTION 
Our knowledge of the world is derived from our 
perceptions, and an individual’s ability to navigate

his/her surroundings or engage in activities of daily 
living such as walking, reading, watching TV, and 
driving, naturally relies on his/her ability to process 
sensory information. Thus deficits in visual 
abilities, due to disease, injury, stroke or aging, 
can have significant negative impacts on all 
aspects of an individual’s life. Likewise, an 
enhancement of visual abilities can have substantial 
positive benefits to one’s lifestyle. Notably, new 
approaches show that the brain can be trained to 
better process information that is received from 
the eye. These “brain-based” approaches to visual 
improvement, here referred to as perceptual 
learning, provide an important complement to 
standard medical approaches. For example, in 
cases of low-vision, where standard approaches 
are often insufficient to fully achieve patient goals 
and the lack of appropriate approaches to treat 
brain-based aspects of low-vision is a serious 
problem since in many cases a component of the 
individual’s low-vision is related to sub-optimal 
brain processing [1]. Research on perceptual 
learning demonstrates that the adult visual system 
is sufficiently plastic to ameliorate effects of low 
vision, including amblyopia [2], presbyopia [1], 
macular degeneration [3], stroke [4, 5], and late-
life recovery of visual function [6]. Likewise, 
normally seeing individuals have the potential to 
further improve their vision through perceptual 
learning. Here, we review the field of perceptual 
learning and its promise to achieve better outcomes 
in clinical practice. The significance of the 
development of effective, low-cost therapies to 
treat brain-based low vision can be life-altering 
for millions of people worldwide. 
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in neurons residing in primary visual cortex, 
which show a high degree of both retinotopic and 
orientation specificity. Follow-up physiological 
studies by this group confirmed these predictions 
with the demonstration of plasticity of orientation 
tuning across early visual cortex [17, 19]. Consistent 
with this, numerous behavioral studies show 
perceptual learning can be highly specific to a 
wide range of trained stimulus features including 
retinotopic location [20, 21], visual orientation 
[17, 22] and direction [14, 21], among others. 
Likewise, many studies designed with the goal of 
linking neural mechanisms to behavior give direct 
evidence of sensory plasticity in all stages of 
visual processing through single-unit recording in 
monkeys [17, 23-25] and fMRI signal changes in 
humans [26-28].  
An important caveat is that physiological studies 
demonstrating low-level perceptual learning typically 
fail to explain the magnitude of the behavioral 
changes [29] and some models of perceptual 
learning demonstrate that channel reweighting in 
the readout of sensory areas can account for some 
aspects of perceptual learning specificity without 
requiring plasticity in primary sensory areas [30-
33]. Other studies have found plasticity in higher-
level visual areas that were originally hypothesized 
to be lower level features [16, 34-36]. For instance, 
Law and Gold [35] failed to find plasticity in the 
middle temporal cortex (MT) of monkeys, but 
found learning effects in a higher order processing 
area (lateral intraparietal cortex; LIP) that largely 
explained behavioral changes. Likewise, learning 
in visual area V4 has been found to be more 
robust than that in V1 [19, 24, 34, 37, 38]. Also, 
some aspects of learning could be taking place in 
other brain regions. An interesting case was 
recently found in which the superior colliculus 
[39, 40] and frontal brain areas [41] develop tuning 
to motion directions after extensive training. 
While the exact locus of visual plasticity in a given 
study is often an issue of significant controversy, 
as a whole these studies give indication that 
plasticity is likely occurring at all stages of visual 
processing; although with a distribution that 
varies across tasks and training paradigms.  
 
Applications of perceptual learning  
In recent years, there has been significant progress 
in applying perceptual learning based treatments
 

Perceptual learning 
Perceptual learning (PL) refers to a long lasting 
improvement in perceptual abilities as a result of 
experience and research on this topic has 
undergone tremendous development over the last 
30 years. Plasticity in sensory systems was previously 
thought to occur only in early development. This 
view has been substantiated by studies of a 
“critical period”. The concept of a critical period 
states that some processes develop early in life, 
and do not develop, or develop to a lesser degree, 
later in life. For example, classic experiments 
done in kittens demonstrate a critical period for 
ocular dominance where early patching enables 
inputs from the open eye to take over much of 
primary visual cortex. However, in adult cats 
patching has little impact on connectivity [7, 8]. 
This data was used to support the hypothesis that 
the low-level sensory stages need to consistently 
process primitive sensory features; such as in 
vision orientation, spatial frequency, and local 
motion. In contrast, high-level perceptual processing 
is more plastic; for example, people can quickly 
learn probabilistic sequences [9], use primes [10], 
or spatial contexts that predict target locations 
[11, 12] to improve their task performance. 
However, studies of perceptual learning show that 
even in adults, perceptual abilities, including 
elementary processes (e.g., contrast sensitivity 
[13] and visual acuity [1, 2]) can be strengthened 
through appropriate training approaches.  
Perceptual Learning is exemplified by long-lasting 
improvement on simple but difficult perceptual 
tasks. The effects of perceptual learning have been 
shown to last months, even years [14-16]. The 
field of perceptual learning is one of growing 
interest largely due to the fact that training on 
visual perception can be highly specific to the 
trained visual features and can give clues into the 
stages of processing at which learning occurs. For 
example, a series of studies conducted by Schoups 
and colleagues [17, 18] showed that training 
subjects (human and monkey) on an orientation 
discrimination task around a particular reference 
orientation yielded learning effects that failed to 
transfer to other stimulus orientations at the 
trained location or at the same orientation at a 
different retinotopic location. They postulated that 
these learning effects were consistent with plasticity
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of AMD, a retinal disorder in which photoreceptors 
are damaged or displaced. It is the leading cause 
of low vision in adults, and is expected to affect 
nearly three million Americans by 2020 (The Eye 
Diseases Prevalence Research Group, 2004). 
Patients with AMD suffer from visual field loss, 
spatial distortions to the visual field, and 
impairments of acuity and contrast sensitivity. 
Despite a range of treatments to arrest the 
progress of AMD, damage to the retina cannot be 
reversed, resulting in a need for effective visual 
training therapies. There are a number of studies 
that show both functional learning in the 
development of preferred looking points [46-48] 
and cortical reorganization in foveal responses to 
peripheral stimuli [3, 49]. Difficulty in reading is 
a common complaint in AMD patients due to  
the central vision loss. Recently, Chung [50] 
demonstrated that perceptual learning can improve 
reading speed in these patients after training. 
Additionally, Liu et al. [51] trained individuals 
with profound visual impairment (including 
AMD, glaucoma, retinitis pigmentosa, and other 
conditions) on a visual search task. Search speed 
and accuracy improved after training, and the 
effects remained for at least one month.  
While, there are limited perceptual learning studies 
in AMD and it is unclear the extent to which 
normally occurring reorganizations are driven 
through use-dependent mechanisms [52], there is 
significant potential benefit to applications of 
perceptual learning in AMD. 
 
Damage to visual cortex  
Tumors, stroke, trauma, or infection, can result in 
cortical blindness [53, 54]. While there is some 
degree of spontaneous recovery within the first 
few months after the injury, significant visual 
field loss can persist [55]. For these individuals, 
the development of behavioral therapies is of key 
importance. Accordingly, a number of approaches 
have been shown to be effective in reducing the 
size of, and increasing the visual sensitivity within 
cortical blind-spots [56]. Training patients to 
detect light spots [57, 58], sinewave gratings [59], 
or motion stimuli [4] in and around the blind-field 
all lead to better patient outcomes. However, 
while these effects are slow to arise and can be 
very specific to the location of training [4], they

to improve outcomes in individuals suffering from 
impairments in vision. Here we outline a few 
areas in which progress has been most notable. 
 
Amblyopia  
Amblyopia has been a particular focus of 
perceptual learning research and a variety of 
perceptual learning approaches show benefit in 
treating adult amblyopia [2, 42, 43]. In amblyopia, 
mismatched input from the two eyes during 
development leads the visual system to primarily 
respond to just one of the eyes. This results in a 
lack of stereovision and difficulty in seeing with 
the non-dominant eye (often called “lazy eye”). 
This problem persists even after the misalignment 
between the eyes is corrected. Amblyopia impacts 
2-3% of the population and is typically considered 
untreatable in adults.  
The gold standard for treating amblyopia is to 
restore stereovision. To accomplish this, cortical 
processing of the amblyopic eye needs to be 
improved, the amblyopic eye needs to be taught to 
successfully compete with the non-amblyopic eye, 
and binocular integration needs to occur. A variety 
of approaches based on perceptual learning show 
evidence of accomplishing these outcome goals. 
Patching one eye and training the amblyopic eye 
with perceptual learning based exercises [2, 42, 
43], or more recently video games [44] demonstrate 
substantial improvements of vision in the amblyopic 
eye. Techniques that put the eyes in competition, 
by presenting different stimuli to each eye with 
brighter stimuli in the amblyopic eye, lessen 
suppression in the amblyopic eye. Another approach 
is using binocular integration training, which 
trains the two eyes to work better together [45] by 
using tasks where inputs from both eyes need to 
be processed in order to succeed. Together these 
approaches have led to numerous examples where 
stereoacuity is improved in individuals with 
amblyopia and have provided great promise for 
future perceptual learning based treatment approaches.
 
Age-related macular degeneration (AMD)  
Improvements in brain processing of visual inputs 
can also help compensate for reductions of vision 
originating from the eye. For example, perceptual 
learning has been shown to ameliorate the effects
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did not improve when the brightness rather than 
orientation of the line was attended [61]. Additionally, 
a single-unit recording study in monkeys found 
neuronal plasticity of V1 cells that corresponded 
to the spatial location of the training task, where 
more neurons in V1 became responsive to the 
trained orientation after training. No plasticity was 
found for cells with receptive fields overlapping 
the location of task-irrelevant stimuli presented at 
a location different from those relevant to the task 
[17]. In the next section we will discuss how 
attention to stimuli is not actually required for 
learning on those stimuli; nonetheless attention 
plays an important role in selecting what we do 
(and do not) learn. 

Reinforcement 
Recent research demonstrates the fundamental 
importance of reinforcement processes (rewards, 
punishments, motivation, etc) in guiding perceptual 
learning. A useful paradigm to explore this has 
been that of task-irrelevant perceptual learning, 
which shows that sensory plasticity occurs without 
attention being directed to the learned stimuli, and 
even for those that participants are not aware [21, 
62-72]. Seitz and Watanabe [67] found that a 
sensitivity enhancement occurred as the result of 
temporal-pairing between the presentation of a 
subliminal, task-irrelevant, motion stimulus and a 
task-target. In that experiment, four different 
directions of motion were presented an equal 
number of times during the exposure stage, but a 
single direction of interest was consistently paired 
(temporally preceded and then overlapped) with 
the task-targets. Learning was found only for the 
motion-direction that was temporally-paired with 
the task-targets and not for the other motion-
directions. Similar results were obtained when the 
luminance contrast of the dots (100% coherence) 
was made so low that the subjects did not notice 
the presentation of the motion stimuli [62].  
Seitz and Watanabe [63] suggested a model of 
perceptual learning where learning results from 
interactions between spatially diffusive task-
driven signals and bottom-up stimulus signals. In 
this model, learning is gated by behaviorally 
relevant events (rewards, punishment, novelty, etc). 
At these times reinforcement signals are released 
to better learn the aspects of the environment

enable a recovery from visual field loss that isn’t 
available through other approaches. 
In general, perceptual learning shows great 
promise for conditions for which there are no 
standard treatments. These include the conditions 
mentioned above as well as other low-vision 
conditions such as Glaucoma, Night Vision 
Deficits, Presbyopia, Retinitis Pigmentosa, Low 
Myopia, etc. In addition, medical technologies 
such as intraocular lens implantations and retinal 
implants improve the optics of the eye, however 
without altering the underlying cortical connections 
as well, patients are without the full potential 
benefits of the technologies. Perceptual learning 
can be a great compliment to these treatments, 
which focuses on cortical processing allowing 
maximum benefits to vision.  
 
Principles of perceptual learning  
While existing perceptual learning approaches 
show significant promise, many do not take 
advantage of newer insights of the processes 
guiding perceptual learning. These newer insights 
from the field of perceptual learning provide a 
structure upon which new and better behavioral 
interventions can be devised. In the following 
sections, we review different mechanisms and 
approaches that help guide perceptual learning. 

Attention 
Attention refers to a set of fundamental mental 
processes that selectively modulate the processing 
of relevant information over irrelevant information; 
attention influences decisions, guides memory 
processes and our executive functions – such as 
planning and working memory, to direct resources 
to act upon the world. A common belief is that 
perceptual learning cannot occur without persistent 
and intensive attention to the feature to be learned 
[60]. Profound learning effects are often present 
for task-relevant features but are typically absent 
or very limited for the task-irrelevant and unattended 
features. For example, Ahissar and Hochstein [60] 
found little to no transfer of learning effects 
between two tasks that involved judgments on 
different stimulus attributes (either orientation of 
local elements or global shape) of the same 
stimuli. It was also reported that the ability of 
subjects to discriminate the orientation of a line
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target-arrow, has been linked with the acetylcholine 
neuromodulatory system [85]. Of interest, cholinergic 
enhancement through the use of donepezil 
improves both the attentional processing [86] as 
well as the magnitude [87] and longevity [88] 
of perceptual learning. Other neuromodulatory 
systems, such as dopamine and norepinephrine 
have also been linked to both attention [89, 90] 
and to learning [91, 92]. Indeed, these three 
neuromodulators (acetylcholine, norepinephrine, 
and dopamine) have been linked to the three 
attentional systems described by Posner and 
Petersen [89]: the alerting network that involves 
temporal cueing and the maintenance of an alert 
state (norepinephrine; [93-95]); the orienting 
network that spatially selects information from 
sensory input (acetylcholine; [85]); and the 
executive control network that resolves conflict 
among responses (dopamine; [96]). These studies 
indicate that attention and reinforcement are 
deeply interrelated and that a good training 
approach should aim to direct both attention and 
reinforcement in a manner to promote learning. 

Applying rules of synaptic plasticity 
At the cellular level, it is widely accepted that the 
process of synaptic plasticity underlies learning 
and memory. Synaptic plasticity is the ability of 
the strength of the connections between synapses 
to change, strengthening or weakening the 
connections of existing neurons to modulate the 
effectiveness of their communication. Bliss and 
Lomo discovered a method to experimentally induce 
a persistent synaptic plasticity termed long-term 
potentiation (LTP) [97]. By inducing brief high 
frequency electrical stimulation in the perforant 
pathway of anaesthetized rabbits and recording in 
the dentate gyrus they discovered an increase of 
excitatory post-synaptic potentials (EPSPs) over 
baseline response that lasted up to 10 hours. 
Conversely, long-term depression (LTD) is induced 
by persistent low frequency electrical stimulation, 
resulting in weakened synaptic connections.  
Recent research has established that non-invasive 
exposure-based stimulation protocols can be 
applied to the sensory systems and result in 
plasticity of the corresponding sensory cortices. 
Passive high frequency stimulation (HFS) (20 Hz) 
of the fingertip resulted in the behavioral 

(even those for which the organism is not 
consciously aware) that are predictive or co-vary 
with the event. Later research confirmed this idea 
by demonstrating that task-irrelevant perceptual 
learning can arise through pairing a stimulus with 
a liquid reward [64].   
By now, task-irrelevant perceptual learning has 
been shown to be a robust learning phenomenon 
that generalizes to a wide range of stimulus features, 
for example, motion processing [21], orientation 
processing [72], critical flicker fusion thresholds 
[65, 73], contour integration [74], auditory formant 
processing [75], and phonetic processing [76]. 
While the phenomenon of task-irrelevant perceptual 
learning has been studied in most detail in the 
case of low-level perceptual learning, recent 
research has identified a high-level, fast form, of 
task-irrelevant perceptual learning (fast-task-
irrelevant perceptual learning) [77-84]. In this 
fast-task-irrelevant perceptual learning paradigm, 
participants performed target detection tasks 
(looking for a target, letter, color, or word among 
a series of distractors), while also memorizing 
other stimuli (images, pictures) that were consistently 
paired with the stimuli of the target-detection task. 
Similar to task-irrelevant perceptual learning for 
low-level perceptual learning, visual memory was 
enhanced for stimuli that were paired with the 
targets of the target-detection task.  
These results suggest that task-irrelevant perceptual 
learning is a basic mechanism of learning in the 
brain that spans multiple levels of processing and 
sensory modalities. Furthermore, task-irrelevant 
perceptual learning produces learning effects that 
are often as strong, and sometimes stronger, than 
learning effects produced through direct training 
[75, 76]. As such the use of task-irrelevant 
perceptual learning has significant promise as a 
therapeutic treatment, where, unlike in other 
approaches, patients can conduct tasks in which 
they are unimpaired and receive benefits that help 
ameliorate their impairments.  

Chemical system in attention and reinforcement 
Both attention and reinforcement are known 
to operate in part through the release of 
neuromodulatory signals in the brain. For example, 
the orienting of attention, in the direction of the 
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multisensory environment. Recent research shows 
that subjects trained with auditory-visual stimuli 
exhibit a faster rate of learning and a higher 
degree of improvement than found in subjects 
trained in silence [66, 106]. Critically, these 
benefits of multisensory training are even found 
for perceptual tests without auditory signals. In 
other words, multisensory training facilitates 
unisensory learning. While, to date, most vision 
training procedures either don’t include sounds as 
part of the task (other than as feedback) or include 
sounds that are not coordinated with visual 
stimuli, the advantage of multisensory training 
over visual-alone training is substantial; reducing 
the number of sessions required to reach 
asymptote by ~60%, while also raising the 
maximum performance [73]. We suggest that 
having complementary information about the 
target objects coming from different sensory 
modalities allows the senses to work together to 
facilitate learning. 

Promoting transfer of learning 
Classically, a translational barrier to perceptual 
learning has been its high degree of specificity to 
trained stimulus features [107], such as orientation 
[22], retinal location [108] or even the eye trained 
[64, 109]. For example training with a single 
visual stimulus at a single screen location can 
result in learning that is specific to that situation. 
While such studies have been informative 
regarding the mechanisms of learning, specificity 
limits therapeutic benefits.  
Recent research suggests methods on how this 
“curse of specificity” can be overcome. Approaches 
that depart from the most simple training approaches, 
such as those using multi-stimulus training [110, 
111] and video games [112, 113] show a greater 
generalization of learning. For example, the 
recently developed technique of ‘double training’ 
found that the specific learning effects found in 
their paradigms can show broad transfer when more 
than one stimulus attribute is trained at a time. 
Xiao et al., [111] trained participants on a Vernier 
discrimination task at a specific orientation at a 
specific location in the visual field, which 
normally yields location and orientation specific 
learning effects [109]. However, when subjects 
subsequently were trained a second orientation at

improvement of a 2-point discrimination task, and 
low frequency stimulation (LFS) (1 Hz) decreased 
performance on this task [98]. Additionally, 
improvements on the behavioral task after HFS 
were correlated with cortical reorganization as 
assessed by mapping somatosensory evoked 
potentials. This effect was abolished by oral 
application of an N-methyl-D-asparate (NMDA) 
receptor antagonist, indicating this effect shares 
similar requirements to cellular LTP and long-
term memory formation as identified in the animal 
model [99]. Using a visual stimulation protocol 
Beste et al. [100] demonstrated behavioral changes 
on a change-detection task. Here, two bars were 
presented where a change could occur in the 
luminance of one bar, the orientation of one bar, 
the luminance and orientation of the same bar, or 
the luminance of one bar and the orientation of the 
other bar. The participants had to report a change 
in luminance, and ignore a change in orientation. 
The orientation change in the last condition 
was highly distracting, and made the luminance 
detection more difficult. A visual stimulation protocol 
consisted of alternating black and white bars 
flashing at either a high (20 Hz) or low (1 Hz) 
frequency with the goal of increasing or decreasing 
luminance saliency. The authors found that a high 
frequency visual stimulation protocol improved 
the behavioral outcome on the detection task 
tested up to 10 days after induction. Conversely, 
a low frequency LTD-like protocol impaired 
performance. These studies of exposure-based 
learning provide a clear connection between the 
animal model and the human system, and suggest 
that approaches based on knowledge of synaptic 
plasticity can be applied to improved perception 
in humans. 

Multisensory facilitation  
The human brain has evolved to learn and operate 
optimally in natural environments in which 
behavior is guided by information integrated 
across multiple sensory modalities. Crossmodal 
interactions are ubiquitous in the nervous system 
and occur even at early stages of perceptual 
processing [101-105]. Until recently, however, all 
studies of perceptual learning focused on training 
with one sensory modality. This unisensory 
training fails to tap into natural learning mechanisms 
that have evolved to optimize behavior in a
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in rapid succession and we fail to perceive the 2nd

object; and performance in flanker compatibility 
tests, where responses to a target are slower when 
flanked by an incongruent stimuli, compared to a 
congruent stimuli. The authors also showed that 
10 days of training with action video games 
improves these skills in participants that previously 
did not have video game experience [112]. Video 
game training also shows enhanced visual motion 
discrimination [119], and crowding [120]. 
Furthermore, recent research has found that even 
basic visual abilities such as contrast sensitivity 
[113] and acuity [44, 120] improve after video 
game use. 
Computer software is now finding real world use 
in the visual world of binocular disorders, 
amblyopia, neuro-rehabilitation and visual 
enhancement. Researchers and software developers 
are encouraged by research showing that specific 
software use actualizes the potential of the visual 
system and translates into real life gains.  
For example, a number of commercial products 
such as GlassesOffTM, RevitalVisionTM and 
ULTIMEYESTM are designed to improve acuity 
and contrast sensitivity in individuals with visual 
impairments or for normal sighted individuals 
looking for an enhancement of vision. These 
approaches are becoming increasingly sophisticated, 
for example, ULTIMEYESTM combines many of 
the perceptual learning approaches described 
above (including engagement of attention, 
reinforcement, multisensory stimuli, synaptic 
plasticity protocols and multiple stimulus 
dimensions) into a simple video game framework. 
This game produces broad-spectrum improvements 
to central and peripheral vision (see Figure 1).  
A recent study found improved acuity and 
contrast sensitivity in normal sighted individuals 
after 2 months of ULTIMEYES training [121]. 
ULTIMEYES has also been used in the treatment 
of low vision conditions including presbyopia, 
amblyopia, post-LASIK rehabilitation, and post-
cataract surgery rehabilitation (especially effective 
for multifocal patients), and also in athletes for 
improved sports performance [122]. As care-
providers learn the potential benefits from these 
behavioral treatments, we expect them to become 
increasingly mainstream.  

a different spatial location, the training induced 
changes for the second orientation transferred to 
the first location. Such findings of broad location 
transfer undermine the argument that this learning 
is due to plasticity in retinotopic visual areas. 
There exists a growing number of studies that 
address how specificity, or its opposite, transfer, is 
controlled by different factors. In a discrimination 
task, Jeter, Dosher, Petrov and Lu [114] showed 
that transfer was observed in low-precision 
transfer tasks while specificity was observed in 
high-precision transfer tasks. Then, Jeter, Dosher, 
Liu and Lu [115] showed that specificity was the 
result of extensive training, confirming more 
classical results [22, 108, 116], while a substantial 
transfer was observed early in the training. 
Interestingly, another study, reported by Aberg, 
Tartaglia and Herzog [117] presented a series of 
experiments showing, on the one hand that the 
number of trials per session influenced the overall 
improvement of the participant’s performance, and 
on the other hand, the transfer depended on the 
number of trials presented during each session, 
and not on the total number of trials. Zhang et al., 
[118] showed that the peripheral orientation 
discrimination tasks transferred to new locations 
only after a pre-test was given to participants. 
These studies add to the double-training studies 
that show transfer after training multiple features 
or at multiple locations [110, 111]. Together these 
studies show that many factors (extent of training, 
blocking of trials, precision of training stimuli, 
diversity of training set, etc), influence the 
transfer of learning.  

Video-game training 
Another avenue of research is the adoption of 
commercial video games as a tool to induce 
perceptual learning. By testing habitual “action” 
video game players, Green and Bavelier [112] 
found this population has improved performance 
on a wide range of visual skills when compared to 
non-video game players. These skills included 
useful field of view, which is the area of visual 
space that useful information can be extracted; 
multiple object tracking, where the goal is to track 
many moving objects in visual space simultaneously; 
attentional blink, which is the phenomenon that 
occurs when multiple visual stimuli are presented 
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CONCLUSION 
With time we expect that perceptual learning 
based approaches will be increasingly utilized, 
together with drug, device, and surgical treatments, 
in order to provide a more complete treatment to 
improve vision. 
While extant applications of perceptual learning 
to neurology show great promise, a limitation of 
modern perceptual learning research is that 
learning is studied in very specific ways, focusing 
on one particular stimulus or factor. This narrow 
focus has limited the understanding of the 
multiple learning factors that are present in natural 
settings and how these factors interact to determine 
the speed and nature of learning. We suggest a 
new paradigm of integrating perceptual learning 
methodologies into a coordinated approach that 
achieves a more comprehensive form of perceptual 
learning than typically studied in the lab. An ideal 
approach is one that combines many factors 
that are known to promote neural plasticity and 
generalization of learning. Additionally, principles 
derived from video games should be combined 
with those from the field of perceptual learning to 
create enriching user experiences that encourage 
compliance with treatment while effectively 
optimizing how the brain process its ocular inputs.  
 

Figure 1. Data from 14 subjects (ages 18-55) completing 24 sessions of ULTIMEYESTM. Left, for acuity, Landolt C 
size thresholds were measured at different locations in the visual field (with an eye-tracker to enforce fixation). 
Middle, contrast sensitivity thresholds were measured by varying the contrast of an “O” presented at visual field 
locations. Right, an Optec Visual Analyzer (Stereo Optical Company, Chicago, IL, USA) measured foveal visual 
acuity and contrast sensitivity. Data from pre-training tests (black) is shown against data of post-training tests (grey). 
In the left two graphs, lower values represent better performance. Acuity values (left) are based on standard 20/20 
scores in the fovea (peripheral scores values are poorer). Weber Contrast (center). Contrast Sensitivity (right) shows 
contrast as a function of spatial frequency in central vision (higher values are better). Training-induced benefits are 
all significant at least to the p < 0.05 levels. Error bars represent standard error of the mean. 
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