
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Regulation of the frequency and wavelength of calcium  
waves propagating in networks of interconnected cells:  
A simulation study  

ABSTRACT 
We develop a model-based theoretical framework 
to shed light on the phenomenon of cross-level 
interactions in complex and dynamic multicellular 
structures with a focus on calcium signaling via 
calcium waves. In particular, we investigate 
computationally the interdependence between 
intracellular calcium and inositol-1,4,5-trisphosphate 
(IP3) pathway and cell-cell communication via 
gap junction intercellular diffusion of Ca2+ and IP3. 
To enable the propagation of calcium waves in a 
one-dimensional chain of cells, we introduce a 
calcium concentration-dependent threshold-based 
mechanism to trigger calcium oscillations of individual 
cells. Our model shows that the dynamics of cells 
embedded in a multicellular network is significantly 
different from that of an isolated cell. In particular, 
we have demonstrated that the transient and steady 
state frequency of calcium oscillations of a cell 
stimulated with an agonist depends on its 
microenvironment, in this case, its cell neighbors. 
The neighborhood of the stimulated cell forms a 
“signaling niche” that acts on the stimulated cell 
itself and dynamically regulates its oscillation 
frequency. This effect is attributed to a crosstalk 
between the stimulated cell and its environment 
through retrograde diffusion of calcium and IP3.  
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INTRODUCTION  
Multi-level organization and dynamics is a hallmark 
feature of most biological systems. This is particularly 
true in cellular tissues in which single cells are 
organized into complex multi-cellular tissues. Central 
to the proper behavior in these biological systems 
is cross-level interdependence. To date, studies of 
signaling in multicellular networks have demonstrated 
that the architecture of these networks can have a 
significant impact on the behavior of individual 
cells as well as their emerging collective behavior. 
For instance, there is strong evidence that the 
branching architecture of the mammary gland and 
associated cellular signaling determine epithelial cell 
function [1, 2] or dysregulation [3]. Additionally, 
faulty cellular organization can facilitate the cell 
transformations leading to further neoplasia and 
cancer [4, 5]. Conversely, normal cellular architecture 
can suppress tumor formation and prevent malignant 
phenotypes even in grossly abnormal cells [6]. 
Furthermore, it has become increasingly clear 
that effective tissue engineering strategies require 
constructed cell systems to be appropriately organized 
in order to support the proper intercellular behavior 
for a desired tissue function [7-9].  
A particular aspect of cellular networks is the 
interacting behavior of the cells beyond a simple 
summation of individual element activities. 
With respect to cellular networks, the passing of
signals between cells of the network is one way in 
which new system behaviors can emerge. For 
instance, intercellular calcium waves were observed
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vascular endothelial cell networks are capable of 
both downstream and upstream signal conduction 
between interconnected endothelial cells [19], they 
can be used as an example of biological context to 
calculate the spectrum of propagating linear 
compositional waves in models of multicellular 
architectures and study putative signal conduction 
dynamics across networks of endothelial cell models 
[20]. We also conducted an experimental and 
computational study of calcium wave propagation 
in chains of model cells with nonlinear intracellular 
calcium dynamics and showed the importance of 
local cell environment on the transmission of a 
pulse through junctions in multicellular networks 
[21]. For the sake of mathematical tractability, we 
assumed in that model an effective nonlinear 
intracellular reaction dynamic involving only Ca2+. 
For this we utilized a simple piecewise-linear model 
of the nonlinear Ca2+ intracellular reaction dynamics. 
This modeled the Ca2+ depletion of the cytoplasm 
and repletion separated by a threshold concentration. 
Many have used different mathematical models to 
better understand propagation dynamics, including 
addressing gap junction-dependent processes 
[22, 23]. A nonlinear model of the gap junctional 
mechanisms was developed to demonstrate long-
range propagation of intercellular Ca2+ waves in 
networks of astrocytes [24]. While not gap junction- 
specific, others have modeled intra- and extra-cellular 
calcium dynamics based on ICC (Intercellular 
Calcium Communication) [25, 26] and CICR (Calcium 
Induced Calcium Release) models [27-29]. In many 
cell types, extracellular stimuli can be converted into 
intracellular signals in the form of Ca2+

 oscillations. 
These intracellular oscillations depend on the dose 
of the applied extracellular agonist [30]. Politi et al. 
introduced a model that can simulate the increase 
of the frequency of intracellular calcium oscillation 
with stepwise increases in the agonist concentration 
[31].  
In this paper we develop a model of calcium wave 
propagation in a chain of cells incorporating both 
intracellular calcium dynamics and intercellular 
calcium wave propagation. We investigate 
computationally the effect of cross-level 
interdependence between intracellular calcium-IP3 
pathway and cell-cell communication via intercellular 
diffusion of both Ca2+ and IP3. In contrast to 
Goldberg’s model [24], diffusion in our model is
linear with a diffusion coefficient that is independent 
of Ca2+/IP3 concentration. However, to achieve 
 

to define communication networks among neural 
progenitor cells [10]. Also astrocytes of the cortical 
gray matter appear to play an active role in brain 
function that takes the form of calcium waves that 
propagate between cells within networks of astrocytes 
[11]. Central to understanding these emergent 
processes is that cellular networks inherently combine 
dynamical and structural complexity, making it 
difficult to isolate single cell versus emergent 
network behavior. However, the relationships 
between network dynamics and architecture have 
been successfully investigated using a variety of 
physical and mathematical approaches [12], many 
of which have been applied to understand the 
complexities of neuronal circuitry. For example, 
embryonic stem cell-derived neural progenitors form 
networks exhibiting synchronous calcium signaling 
activity. This coherent calcium dynamic was shown 
to be correlated across so called small-world networks 
[13]; networks with the mean shortest distance 
between nodes scaled logarithmically with the 
number of nodes.   
The objective of the present study is to develop a 
model-based theoretical framework to shed light 
on the phenomenon of cross-level interactions in 
complex and dynamic multicellular structures with 
a focus on calcium signaling via calcium waves. 
Calcium signaling occurs in nearly all cell types 
and calcium waves are a common phenomenon in 
multicellular systems. In particular, we are interested 
in the interplay between intracellular calcium activity 
and intercellular propagation in networks of cells. 
From a theoretical perspective, Othmer and Scriven 
[14] developed, following Turing’s pioneering 
mathematical treatise of morphogenesis [15], an 
analysis technique in which the information about 
the underlying network topology, through a 
connectivity matrix, is decoupled from that of the 
intracellular reaction pathway mechanism, thus 
enabling progress in multicellular network research 
that includes complexity at both low and high levels. 
In a previous series of studies [16, 17], we reported 
the use of Green’s function-based Interface Response 
Theory (IRT) [18], a method originally developed 
for tackling composite media in condensed matter 
physics, to augment Scriven-Othmer’s method to 
solve coupled dynamical networks with nontrivial 
connectivity matrices and therefore integrate natural 
biological organization from the cellular level to 
complex network architectures. Because simple
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calcium diffusion is shown in Fig. 1. The pathway 
involves primarily the intracellular reaction dynamics 
and the intercellular diffusion of cytoplasmic calcium 
and inositol-1,4,5-trisphosphate (IP3). The intracellular 
chemical reaction process is based on a model 
introduced by Politi et al. [31]. For the sake of 
clarity, we describe this model in some detail. 
The intracellular calcium pathway starts with an 
extracellular agonist combining with the G-protein-
coupled receptors on the cell’s membrane to activate 
phospholipase C (PLC). It is, in turn, able to catalyze 
the production of IP3 [32]. IP3 then can bind to the 
IP3 receptor, IP3R, to open calcium channels in the 
membrane of the Endoplasmic Reticulum (ER). 
This process releases stored Ca2+ into the cytosol. 
Meanwhile, the cytoplasmic Ca2+ creates both positive 
and negative feedback conditions in the production 
of IP3. For the positive feedback condition, the 
cytoplasmic Ca2+ is capable of activating the PLC 
isoforms to release more IP3 [33]. For the negative 
feedback condition, the increase of cytoplasmic 
Ca2+ can activate the IP3 degradation via IP3 3-kinase 
(IP3K). Different from other signaling molecules, 
high levels of intracellular calcium are toxic and 
cannot be degraded. Cells control the intracellular 
calcium level by buffering, sequestering in specialized 
compartments, and expelling to the extracellular 
space [34, 35].  
The intracellular chemical reaction dynamics is 
formulated into a system of coupled differential 
equations involving four dynamical variables: the 
calcium concentration in the cytosol, c; the IP3 
concentration in the cytosol, p; the calcium 
concentration in the ER stores, s; and the fraction 
of IP3R that has not been made inactivate by Ca2+, r. 
The rate equation for the IP3 concentration takes 
the following form: 
 

 

the rates of IP3 phosphorylation and 
dephosphorylation, respectively. The phosphorylation 
rate kk3  is described by a Hill function with the 
half-saturation constant KK3  [36]. The rate 
equation for the cytoplasmic Ca2+ is in the 
following form: 

long-distance intercellular calcium wave propagation
a regeneration mechanism of IP3 is evoked. 
This mechanism depends on the cytosolic Ca2+ 
concentration. We investigate the effect of the 
chain-like architecture of the multicellular network 
on the frequency of calcium oscillations of individual 
cells and the wavelength of trains of calcium 
waves. Significant cross-level effects are found on 
the transient behavior of individual cells as well 
as their steady oscillatory state. We show that the 
intracellular oscillation frequency of an individual 
cell embedded in the chain-like network and 
stimulated with an agonist differs at steady state 
from that of an isolated cell. Furthermore, the 
transient behavior of that stimulated cell toward 
steady oscillations is taking significantly longer in 
the multicellular network. In fact, the stimulated 
cell generates sequential trains of pulses with 
increasing frequency. These trains of pulses are 
supported and propagating along the chain of 
cells. The mechanism for this long time transient 
behavior is attributed to retrograde diffusion 
of calcium and IP3 originating from a widening 
range of cells in the chain undergoing oscillations 
as the trains of pulses propagate. This mechanism 
highlights the importance of microenvironment on 
the dynamical behavior of cells in multicellular 
networks. In particular, this study demonstrates 
that the dynamical behavior of a specific 
cell embedded in a multicellular environment 
depends on crosstalk between the cell and its 
environment. 
 
MODELS AND METHODS 

Model of intracellular calcium pathway 
A schematic of our model for the dynamics of 
intracellular calcium oscillations and intercellular
 
 
 
 

where PLCv  and degv  represent the production and 

degradation rate of IP3, respectively. PLCV  is the 
maximum production rate of PLC that depends on 
the agonist concentration. PLCK  characterizes the 

sensitivity of PLC to Ca2+; Kv3  and Pv5  are 
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In our numerical simulations of the intracellular 
pathway, we use the model parameters reported by 
Politi [31]. We limit ourselves to the model 
supporting calcium positive feedback, in which 
the phosphorylation rate kk3  is set to zero. The 
corresponding parameters are summarized in 
Table 1. The numerical solutions of these differential 
equations are obtained by using the 4th-order 
Runge-Kutta algorithm with step size, tΔ = 0.01 s. 

 
 
 

For the sake of simplicity, the total calcium 
concentration in the cell, totc , is conserved and is 
represented as scctot β+= , where β is the ratio 
of effective cytoplasmic volume to effective ER 
volume (both accounting for Ca2+ buffering). 
Therefore, the calcium concentration in the ER 
store can be expressed as  

β
cc

s tot −= .                                                         (3)

The dynamics of IP3R inactivation by Ca2+ is 
shown as follow: 

Fig. 1. Reaction/diffusion process of Ca2+ and IP3 metabolism included in the model. The 
solid, dashed, and dotted arrows indicate molecular diffusion, regulatory interactions, and 
reaction/transport steps respectively. The bold quantities indicate the following model variables: 
IP3, the cytoplasmic IP3; Ca(cyt), the free cytoplasmic Ca2+; Ca(ER), the free Ca2+ in the ER; 
IP3Ra, the active conformation of the IP3R. The other abbreviations denote IP3Ri, the inactive 
conformation of the IP3R; sercav , the active Ca2+ transport into the ER; PLCv , the production 
rate of IP3; relv , the rate of Ca2+ release through the IP3R; inacv  and recv , the rates of Ca2+-

induced IP3R inactivation and recovery, respectively; Pv5  and Kv3 , the rates of IP3 
dephosphorylation and phosphorylation, respectively; D(IP3) and D(Ca), the diffusion 
coefficient of IP3 and Ca, respectively; and UC, the threshold of Ca needed to activate PLC. 
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#1 and #2 is 1787 time steps. However, the period 
between the peak #2 and #3 sharply decreases to 
1681 time steps (point #2 in Fig. 3), which is 
followed by a steady state with the period equal 
to 1672 or 1673 time steps. We have verified 
that different initial concentrations result in very 
similar period behavior. 

Integration of intracellular calcium pathway 
into multicellular diffusion model 
Politi’s model only considers the intracellular 
dynamics in an isolated cell. To use Politi’s model 
to describe the calcium and IP3 dynamics in a 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We illustrate the oscillatory behavior of the intracellular 
calcium concentration of individual cell in Fig. 2. 
Following Politi, we can increase the frequency of 
the intracellular calcium oscillations by increasing 
the agonist concentration. For an isolated cell, the 
frequency of intracellular calcium oscillation does 
not vary so much at constant PLCV  (see Fig. 3). 
The IP3 activity follows a similar dynamics. 
Fig. 3 illustrates the period of intracellular 
calcium oscillation generated in an isolated cell 
with initial calcium concentration, [Ca]I = 0.05 μM. 
Initially, the period between the oscillating peak 
 

Table 1.  Values of reaction/diffusion model parameters. 

Parameters Description   Value  
 IP3 dynamics parameters  

KK3  Half-activation constant of IP3K 0.4 μM 

Kk3  IP3 phosphorylation rate constant 0 

Pk5  IP3 dephosphorylation rate constant 0.66 s-1 

PLCK  Half-activation constant of PLC 0.2 μM 

PLCV  Maximum production rate of IP3 1.5 μM s-1 

 Ca2+ transport and structural parameters  
β  Ratio of effective volumes ER/cytosol 0.185 

sercaV  Maximal SERCA pump rate 0.9 μM s-1 

sercaK  Half-activation constant 0.1 μM 

totc  Total Ca2+ concentration 2 μM 

 IP3R parameters  

1k  Maximal rate of Ca2+ release 1.11 s-1 

2k  Ca2+ leak 0.0203 s-1 

aK  Ca2+ binding to activating site 0.08 μM 

iK  Ca2+ binding to inhibiting site 0.4 μM 

pK  IP3 binding 0.13 μM 

rτ  Characteristic time IP3R inactivation 12.5 s 

 Reference Diffusion parameters  
*
CaD  Diffusion coefficient rate of Ca2+ 0.005 s-1 

*
3IPD  Diffusion coefficient rate of IP3  10 *

CaD  

UC  Threshold of Ca2+ to activate PLC 0.057 μM 
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periodic boundary conditions (PBC). In such a chain, 
in which every cell is connected to two other cells 
(diffusion between nearest neighbor cells), one can 
write the one-dimensional time-dependent reaction/ 
diffusion equation for Ca2+ and IP3:  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

multicellular system, we need to add the phenomenon 
of diffusion of both Ca2+ and IP3 driven by the 
concentration gradients between neighboring cells. 
The multicellular structure considered in this model 
is composed of a single linear chain of N cells with 
 

Fig. 2. Politi model: Agonist-induced intracellular calcium oscillation with stepwise increases in 
the agonist concentration (arrows) corresponded by an increase in VPLC. The Y-axis represents the 
cytosolic calcium concentration with unit “µM”. The X-axis represents the time with unit “0.01 s”. 

3.0=PLCV  μM s-1 for t < 1000 with successive increases to 0.787, 1.0, 1.5, and 2.5 μM s-1. 

Fig. 3. Period of intracellular calcium oscillation in an isolated cell. The X-axis represents the 
subsequent maxima. The Y-axis represents the value of time (in units of 0.01 s) corresponding to 
the occurrence of each maximum. 
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diffusion part of Eq. (5) and (6) to impact the 
Ca2+/IP3 concentration in the neighboring cells. 
We have verified that this algorithm has fully 
converged for the time step tΔ  = 0.01 s. For this 
we have implemented the algorithm for smaller 
time steps of 2/tΔ  and 4tΔ , and verified that 
one obtains the same reaction/diffusion dynamics. 
To study the propagation of trains of calcium 
waves in a multicellular one-dimensional chain, 
we initially stimulate a single cell in the center 
of the chain with the agonist. This cell will be 
subsequently called: “stimulated cell”. PLC of the 
stimulated cell is activated initially by the 
extracellular agonist to induce intracellular 
Ca2+/IP3 oscillations. All other cells in the chain 
that are not initially stimulated are referred 
to as “downstream cells”. One may visualize 
the downstream cells as forming a cellular 
microenvironment in which the stimulated cell is 
embedded.  
The reaction dynamics of the stimulated cell 
increases its calcium concentration. Diffusion of 
Ca2+ between the stimulated cell and its 
neighboring downstream cells elevates the Ca2+ 
concentration in downstream cells. To enable the 
propagation of a train of calcium waves that is 
initiated by the oscillation of the stimulated cell, 
we introduce a threshold based on the calcium 
concentration for inducing Ca2+/IP3 positive 
feedback in downstream cells (Fig. 1). When the 
cytoplasmic Ca2+ concentration reaches a value 
exceeding a threshold, UC, the positive feedback 
effect of cytoplasmic Ca2+ is activated to increase 
the production rate of IP3. If the cytoplasmic Ca2+ 
concentration is below the threshold, PLC 
isoforms are not activated. This enables the 
synchronized development of collective spatio-
temporal response of multicellular architectures. 
This extension is based not only on diffusion but
 also on an additional amplification mechanism 

 

 

 

 

where “DCa” and “DIP3” are the diffusion 
coefficients of Ca2+ and IP3. “x” and “t” are the 
position and time variables. In Eq. (5) and (6), we 
have discretized the equation in space and time 
using finite differences. “ tntn Δ= ” refers to the 
discretized time line with a time step of tΔ . 

2xDCa Δ  and 2
3 xD IP Δ  are defined as the 

diffusion coefficient rate of Ca2+ and IP3 with unit 
“per second”, “s-1”, which we denote *

CaD  and 
*

3IPD , respectively. “ xΔ ” refer to the nearest 
neighbor intercell-distance. To implement PBC, 
we impose the cyclic condition on the index “i”: 
cell i+1 = cell 1 if I = N and cell i-1 = cell N if i=1. 
The term on the left-hand side is the rate of 
change of intracellular Ca2+/IP3 concentration 
in cell “i”. The concentration for the next 
time increment, n+1, can be calculated from 
concentration values at the previous time 
increment, n. We assume that diffusion occurs 
only between nearest neighboring cells through 
their membrane via gap junctions. We further 
assume that the distribution of gap junctions in the 
plasma membrane is spatially uniform and that the 
diffusion coefficients are constants independent 
of cell number. Note that the mobility of Ca2+ 
through gap junction is restricted in comparison to 
that of IP3 because of the higher buffering 
capacity of cytoplasm for Ca2+ than for IP3 [37]. 
Thus, IP3 diffuses much faster than Ca2+ [38]. For 
the sake of simplicity, we set **

3 10 CaIP DD =  in 
our model.  
In combining intracellular dynamics and 
intercellular diffusion, at a given time, tn-1, for 
each cell “i”, we effectively solve Eq. (1), (2) and 
(4) by using the 4th order Runge-Kutta method to 
evolve the c and p concentrations at the time, tn, 
due to intracellular dynamics. Meanwhile, the 
updated ),( ni txp  and ),( ni txc  are used in the 
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RESULTS AND DISCUSSION 
A comparison between the calcium oscillation of 
the stimulated cell and its first neighboring 
downstream cell is shown in Fig. 4. Because the 
diffusion process is symmetric, we just show the 
temporal evolution of the calcium concentration 
on one side of the chain. The IP3 activity shows a 
similar dynamic. 
Initially, only the stimulated cell is triggered to 
generate calcium oscillation. Meanwhile, cytosolic 
calcium diffuses from the stimulated cell to the 
downstream cells through gap junctions. Once the 
calcium concentration in the downstream cells 
rises to a level exceeding the threshold “UC”, the 
PLC in the downstream cells is activated. That is, 
we set 5.1== dc

PLC
sc

PLC VV μM s-1, where the 
superscripts “sc” and “dc” denote “stimulated cell” 
and “downstream cells”, respectively. This process 
sustains the propagation of a calcium wave. In 
Fig. 4, the cytosolic calcium oscillation frequency 
of both the stimulated cell and the 1st neighboring 
cell is nearly the same. However, a slight phase shift 
 

through the generation of IP3 and the Ca2+-
dependent activation of PLC [39].  
In the simulation, the multicellular chain consists 
of 301 cells. The central cell (cell 151) is the 
stimulated cell. The size of the chain is chosen 
such that the calcium trains of waves never reach 
the ends of the chain (cells 1 and 301) during the 
time of the simulation. So even though we have 
implemented PBC, these conditions are never 
required during the simulation time reported here. 
The initial concentrations of Ca2+ and IP3 are set 
to 0.05 µM. The continuous presence of agonist 
is required to evoke the sustained intercellular 
calcium waves [40]. Therefore, the VPLC of the 
stimulated cell is kept at 1.5 μM s-1. All other cells 
have their initial VPLC set to 0.01 μM s-1 which 
is too low to activate the intracellular calcium 
oscillation. When the calcium concentration 
exceeds UC for the first time in a downstream 
cell, its VPLC is set to 1.5 μM s-1 for the remaining 
time of the simulation. The parameters of the 
diffusion model are listed in Table 1 with those 
parameterizing the intracellular reaction dynamics.  
 

Fig. 4. Calcium oscillation based on reference parameters in stimulated cell and its first 
neighboring cell. The Y-axis represents the cytosolic calcium concentration with unit 
“µM”. The X-axis represents the time unit “0.01 s”. The red line stands for the intracellular 
calcium oscillation in the stimulated cell. The green line shows the intracellular calcium 
oscillation in the 1st neighboring cell. 
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pulses (#9 to #11) separated by segments containing 
3 cells (Fig. 5 C). At T = 21709, the central region 
of the chain becomes even more heterogeneous as 
a wavelength of 2-cell interval appears between 
pulses #15 and #14 (Fig. 5 D) in addition to the 
existing 3-cell interval wavelengths already described. 
For T = 27043, the central region is composed 
of five pulses with 2-cell and 3-cell wavelengths 
(Fig. 5 E). Finally, the train of pulse is fully 
heterogenized with 4- to 5-cell distances separating 
the pulses #1 to #21, and a central region composed 
of pulses #21 through #26 separated by 3-, 2- and 
1-cell wavelength. The wavelength of the train of 
waves decreases as one approaches the stimulated 
cell from the front pulse (Fig. 5 F). Although we 
only reported calcium concentration in Fig. 5, the 
concentration of IP3 follows a very similar dynamics. 
Fig. 6 illustrates the downward tendency of the 
period of intracellular calcium oscillation generated 
in the stimulated cell. Similar to Fig. 3, the period 
of oscillation shown in Fig. 6 begins with a sharp 
decrease followed by a slow reduction before 
reaching a constant value. The initial rapid decrease 
is similar to that observed for the isolated cell 
in Fig. 3. This is representative of the dynamics 
of the intracellular pathway. However, the slow 
varying region of Fig. 6 contains 21 points (point 
#2 to #22, i.e. 21 periods) instead of 2 points 
(point #2 and #3) as was shown in Fig. 3. Moreover, 
the period of oscillation at steady state in Fig. 6 is 
smaller than that in Fig. 3. We observe two effects, 
these being: (a) a slow rate of evolution towards 
steady state in the multicellular structure compared 
to the isolated cell, and (b) a steady state period of 
oscillation that depends on the cell environments 
indicate that the intracellular dynamics is probably 
controlled by the diffusion process.  
The calcium diffusion process is bi-directional 
and is driven by the calcium concentration gradient 
between the neighboring cells. We name the diffusion 
from the center of the chain to the edges of the 
chain “forward diffusion” and the diffusion from 
the edges to the center “retrograde diffusion”. When 
the calcium pulses in the central cell split into two 
pulses that subsequently propagate outward, the 
calcium concentration of the central cell decreases 
to form a trough while the calcium concentration 
of the downstream cells remains high. Thus, a 
calcium concentration gradient is established between 
 

occurs in the 1st neighboring cell because of a time 
lag imposed by the Ca2+/IP3 diffusion process. 
This latency is inversely proportional to the value 
of the diffusion coefficients. The IP3 activity 
shows similar dynamics.  
We now turn to a description of the propagation 
of calcium train of waves resulting from the 
coupled reaction/diffusion model (see Fig. 5). 
Fig. 5 illustrates the temporal and spatial evolution 
of the train of calcium waves produced by the 
multicellular reaction/diffusion model. Initially, 
intracellular calcium oscillation is induced by the 
extracellular agonist in the central cell (cell 151). 
At the time step (T) T = 474 (in units of 0.01s), 
the first calcium pulse in the central cell, which is 
marked by a star, “ ”, reaches its highest value 
(Fig. 5 A). As time marches, this pulse splits into 
two pulses, propagating in opposite directions from 
the stimulated cell. Because pulse propagation is 
symmetrical about the center of the chain, we 
number the pulses from the pulse at the front of 
the train on the left side of the stimulated cell, 
only. The pulse labeled with a “star” corresponds 
to the 1st pulse, or say pulse #1 in the train. As time 
proceeds, the central cell undergoes subsequent 
oscillations. These oscillations emit calcium pulses 
that propagate in opposite directions along the chain. 
This process leads to the formation of the two 
opposite intercellular calcium wave trains (ICWTs). 
The wavelength of the ICWTs (separation distance 
between adjacent pulses) will be quantified by 
the number of cells between two maxima. It takes 
a value between 4 and 5 cells. After the 7th 
oscillation of the stimulated cell, at T = 9373, 
pulse #1 is located on cell 119. The 7th calcium 
pulse supported by the central cell reaches its 
highest level when the 6th pulse reaches cell 147 
(Fig. 5 B). The interval between these two pulses 
now corresponds to a segment containing 3 cells 
(involving cells 148, 149, 150). This is the 
beginning of the  spontaneous heterogenization of 
the train of pulses propagating along the chain of 
cells, that is a time-dependent decrease in the 
wavelength of the train of pulses at T = 14943, 
when the calcium concentration in the central cell 
reaches its 11th maximum, the train of pulses is 
composed of two distinct regions. A train of 
pulses with a 4- to 5-cell wavelength (between 
pulses 1 and 9) and a central region with three 
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Fig. 5. Snapshots of the propagating train of waves along the chain of cells. The snapshots are reported at different 
times expressed in units of “0.01 s”. The Y-axis represents the cytosolic calcium concentration. The X-axis 
represents the location of cells. Cell 151 is the stimulated cell. (A) Train of pulses at time point T = 474; the front of 
the train of pulse is marked by a star, “ ”. In subsequent snapshots, the front of the signal train is also marked by a 
star. (B) Train of pulses at time point T = 9373; the separation distance between pulses (wavelength of the train) 
amounts to a segment of the chain containing 4 to 5 cells for the first 6 pulses. This wavelength reduces to a segment 
containing 3 cells between pulse #7 and #6. (C) Train of pulses at time point T = 14943; the train of pulses keeps 
propagating and retains a wavelength of 4 to 5 cell segments between pulses #1 through #9. The wavelength amount 
to a 3 cell segment between pulses #9 and #10, #10 and #11. (D) Train of pulses at time point T = 21709; the central 
area with short wavelength expands spatially; the pulse interval between the newest calcium pulse generated by the 
central cell and the adjacent pulse decreases to a 2-cell segment. (E) Train of pulses at time point T = 27043; the 
central region with decreasing wavelength keeps expanding. (F) Train of pulses at time point T = 34994; short 
wavelength region expands further and the wavelength shortens to 1-cell interval. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During the propagation process of ICWTs, retrograde 
diffusion increases 1+nC  to *

1+nC . We can write the 
Ca2+ flux between cell n and cell n+1 in two ways 

x
CC

D
x
CC

DJ nn
eff

nn
in Δ

−
−=

Δ
−

−= ++ 1
*

1 ,               (8)

where effD  is an effective diffusion coefficient. 

Because 1+nC  is less than *
1+nC  , inD  should be 

larger than effD . In the early stages of the 

propagation of the train of calcium waves (the 
first 5 pulses), we assume that the retrograde 
diffusion effect is not large enough to change 
the oscillation frequency of the stimulated cell. 
Therefore, the intrinsic diffusion coefficient, inD , 
can be used as a surrogate for the effective 
diffusion coefficient when considering the early 
stages of propagation of calcium waves.  
Fig. 7 illustrates the properties of ICWTs at the 
early stage of simulations for different effective 
(intrinsic) diffusion coefficient rates. Fig. 7 E 
shows the variation of oscillation period of the 
stimulated cell for different values of the diffusion 
coefficient. When ( )CaDin

*  is less than 0.0017 s-1, 
there is no intercellular calcium propagation along 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
some of the downstream cells with high calcium 
concentration and the cells in the vicinity of the 
central cell with low calcium concentration. Retrograde 
diffusion will occur, increasing slightly the Ca2+ 
concentration in the central region of the chain. 
The central cell may, therefore, take less time to 
reach its highest calcium level. With an increase 
in the number of calcium pulses along the cell 
chain, the influence of Ca2+ accumulation by 
retrograde diffusion around the central cell is 
hypothesized to affect the frequency of its 
intracellular calcium oscillations.  
In order to explain the mechanism of the 
retrograde diffusion effect, we introduce the 
concept of an “effective diffusion coefficient”. 
According to Fick’s first law, the flux of Ca2+ 

between two neighboring cells is 

x
CCDJ nn

in Δ
−

−= +1 ,                                             (7)

where J is the flux of Ca2+; nC  is the calcium 
concentration of cell n; 1+nC  is the calcium 

concentration of cell n+1; inD  is the intrinsic 
diffusion coefficient which is also called the 
diffusion coefficient in the simulation; and xΔ is 
the intercell spacing. We assume 1+> nn CC . 
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Fig. 6. Period of intracellular calcium oscillation in the central cell. The X-axis represents the 
subsequent maxima. The Y-axis represents the value of time (in units of 0.01 s) corresponding to 
the occurrence of each maximum. 
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Fig. 7. The properties of ICWTs for different intrinsic calcium diffusion coefficients in the early stage of the ICWTs. (A-D) 
Early stages of ICWTs for ( )CaDin

*  = 0.0017, 0.005, 0.01, and 0.015 s-1, respectively. The Y-axis represents 
cytosolic calcium concentrations. The X-axis represents cell locations. (E) The average period of intracellular 
calcium oscillation of the early stages when ( )CaDin

*  = 0.0017, 0.005, 0.01 and 0.015 s-1, which are represented by the white 
dots. The Y-axis represents the average period of oscillation. The X-axis represents the intrinsic diffusion coefficient rate 
of Ca. (F) The average pulse intervals of the early stages when ( )CaDin

*  = 0.0017, 0.005, 0.01 and 0.015 s-1. The 
Y-axis represents the average pulse intervals. The X-axis represents the intrinsic diffusion coefficient rate of Ca. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the chain. Focusing on ( ) 0017.0* ≥CaDin s-1, when 
( )CaDin

*  is equal to or larger than 0.0017 s-1, the 
average period of oscillation increases with increasing 
diffusion coefficient. Fig. 7 F illustrates the 
relationship between the effective diffusion 
coefficient and the average wavelength. This 
figure shows that the wavelength decreases with a 
decreasing diffusion coefficient, at least in the 
early stages of the propagation. This observation 
can be used to shed light on the decreasing 
wavelength we reported during the later stage of 
propagation. Over time the retrograde diffusion 
process effectively reduces the diffusion flux in 
the vicinity of the stimulated cell and therefore 
leads to a reduced effective diffusion coefficient. 
An effective diffusion coefficient with a value 
smaller than that of the intrinsic coefficient would 
result in a shortening of the wavelength.  
 
CONCLUSION 
This modeling and simulation study of calcium 
oscillations and trains of calcium waves in a 
chain-like cell network shows that the dynamics 
of cells embedded in a network is significantly 
different from that of an isolated cell. In particular 
we have demonstrated that the transient and 
steady state frequency of calcium oscillations of a 
cell stimulated with an agonist depends on its 
microenvironment, in this case, cell neighbors. 
This effect is attributed to a crosstalk between the 
stimulated cell and its environment through 
retrograde diffusion of calcium and IP3. As a 
growing number of cells in the chain are excited 
over time and undergo oscillations, retrograde 
diffusion arising from an expanding train of 
pulses affects the calcium and IP3 fluxes in the 
region that originated the train of waves, that is, in 
the vicinity of the original stimulated cell. The 
neighborhood of the stimulated cell forms a 
“signaling niche” that acts on the stimulated cell 
itself and affects its dynamics. After stimulation 
of the single cell, the cellular niche responds to its 
Ca2+ and IP3 oscillations and signals back through 
gap-junction mediated diffusion thereby influencing 
the calcium behavior in the originating cell. This 
crosstalk leads to a dynamical regulation of the 
stimulated cell’s oscillation frequency. Given the 
importance in intracellular calcium dynamics in 
 

cell function, the niche-dependent changes will 
likely influence subsequent functions of that single 
cell. Our simulations always involved the activity 
of the same, single originating cell and the 
subsequent impact on calcium behavior throughout 
the network.  
In the tissue space, there will be multiple 
“originating cells” (meaning more than one cell in 
the interconnected system is receiving an external 
activating signal within the same time period), all 
of which comprise the cellular neighborhood. Thus, 
the originating cell in one instance is also a 
potential modifier cell to a neighborhood cell that 
is originating an oscillation. So, any given cell 
within a cell neighborhood is both an originating 
cell and a modifier cell to signals generated 
elsewhere within the neighborhood. Therefore, the 
activity of the cell system is greater than the sum 
of its parts because this type of calcium wave 
regulation is occurring across the entire system as 
multiple different cells originate calcium oscillations. 
Key to this conceptual model is a single-cell centric 
perspective whereby each cell acts as a signal 
originating cell while also populating the cellular 
niche of other cells within the network. Even though 
we focused on one originating cell in this study, it 
should be possible to adapt the computational 
model to examine more complex paradigm. 
This observation may have striking implications 
on the role of calcium signaling on cross-level 
interdependence in multicellular architectures in 
terms of signal generation and decoding. We have 
shown that the environment-dependent cross-talk 
results in Ca2+ and IP3 regulation as well as 
control over oscillation frequency. Decoding of 
structural information by individual cells would 
subsequently need cellular control on frequency 
dependent intracellular pathways such as 
frequency-dependent protein phosphorylation by a 
Ca2+-calmodulin activated kinase which was 
shown to be ubiquitous in a wide variety of cell 
types [41]. Therefore, it seems more likely that 
our calcium-based environment dependent 
frequency-encoding mechanism is operative in a 
range of multicellular architectures and tissues.  
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